Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Psychiatry ; 78(6): 667-681, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881460

ABSTRACT

Importance: Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective: To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources: The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection: In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis: Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures: Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results: In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance: Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/metabolism , Glutamic Acid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/physiopathology , Adult , Age Factors , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/drug effects , Female , Glutamic Acid/drug effects , Glutamine/drug effects , Glutamine/metabolism , Humans , Male , Patient Acuity , Proton Magnetic Resonance Spectroscopy , Young Adult
2.
Psychiatry Res ; 214(3): 269-76, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24148912

ABSTRACT

Emotional deficits are among the core features of schizophrenia and both associative emotional learning and the related ability to verbalize emotions can be reduced. We investigated whether schizophrenia patients demonstrated impaired function of limbic and prefrontal areas during associative emotional learning. Patients and controls filled out an alexithymia questionnaire and performed an associative emotional learning task with positive, negative and neutral picture-word pairs during fMRI scanning. After scanning, they indicated for each pair whether they remembered it. We conducted standard GLM analysis and Independent Component Analysis (ICA). Both the GLM results and task-related ICA components were compared between groups. The alexithymia questionnaire indicated more cognitive-emotional processing difficulties in patients than controls, but equal experienced intensity of affective states. Patients remembered less picture-word pairs, irrespective of valence. GLM analysis showed significant visual, temporal, amygdalar/hippocampal, and prefrontal activation in all subjects. ICA identified a network of brain areas similar to GLM, mainly in response to negative stimuli. Neither analysis showed differences between patients and controls during learning. Although in previous studies schizophrenia patients showed abnormalities in both memory and emotion processing, neural circuits involved in cross-modal associative emotional learning may remain intact to a certain degree, which may have potential consequences for treatment.


Subject(s)
Brain/physiology , Emotions , Learning/physiology , Schizophrenia , Adult , Affective Symptoms/physiopathology , Brain Mapping , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Schizophrenia/physiopathology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...