Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Food Sci ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088724

ABSTRACT

The poor thermal stability of lactoferrin (LF) hinders its bioavailability and use in commercial food products. To preserve LF from thermal denaturation, complexation with other biopolymers has been studied. Here we present the complex formation conditions, structural stability, and functional protection of LF by α-lactalbumin (α-LA). The formation of the LF-α-LA complexes was dependent on pH, mass ratio, and ionic strength. Changing the formation conditions and cross-linking by transglutaminase impacted the turbidity, particle size, and zeta-potential of the resulting complexes. Electrophoresis, Fourier-transform infrared spectroscopy, and circular dichroism measurements suggest that the secondary structure of LF in the LF-α-LA complex was maintained after complexation and subsequent thermal treatments. At pH 7, the LF-α-LA complex protected LF from thermal aggregation and denaturation, and the LF retained its functional and structural properties, including antibacterial capacity of LF after thermal treatments. The improved thermal stability and functional properties of LF in the LF-α-LA complex are of interest to the food industry.

2.
Pediatr Infect Dis J ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986009

ABSTRACT

Acute focal bacterial nephritis (AFBN) without pyuria is a subtype of urinary tract infection in children, often leading to diagnostic challenges. The clinical characteristics of 6 children diagnosed with AFBN, who exhibited an absence of pyuria, were retrospectively summarized and compared with the control group consisting of 49 hospitalized AFBN children with pyuria. The cases of AFBN without pyuria presented with more severe inflammatory responses and were predisposed to complications, such as sepsis and neurological abnormalities.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124565, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38875925

ABSTRACT

Endogenous CO acts as an important messenger for signal transduction and therapeutic effect in the human body. Fluorescent imaging appears to be a promising method for endogenous CO recognition, but traditional luminescent probes based on Pd-complexes suffered from defects of high cost. In this work, four anthracene-derived dyes having an = N-N = group were synthesized for Cu2+-assisted CO sensing. Their molecular structure, photophysical performance and spectral response to Cu2+ and CO were analyzed in detail. The optimal probe showed good selectivity and quenching effect to Cu2+, with PLQY (photoluminescence quantum yield) decreased from 0.33 to 0.04. The quenching mechanism was found as a static quenching mechanism by forming a non-fluorescent complex with Cu2+ (stoichiometric ratio = 1:1), as revealed by single crystal, EPR (electron paramagnetic resonance), and XPS (X-ray photoelectron spectroscopy) analysis. Such quenching effect could be reversed by CO, showing recovered fluorescence, with PLQY recovered to 0.32 within 328 s. Discussion on cellular endogenous CO imaging was included as well.


Subject(s)
Anthracenes , Copper , Fluorescent Dyes , Anthracenes/chemistry , Copper/chemistry , Copper/analysis , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Photoelectron Spectroscopy , Electron Spin Resonance Spectroscopy
4.
Food Chem X ; 22: 101498, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38911915

ABSTRACT

A thermally stable co-delivery system for lactoferrin (LF) and iron(II) was developed to address iron deficiency anemia. Complexes were formed between LF, succinylated sodium caseinate (S.NaCas) and FeSO4 with high yield (∼85%). LF-S.NaCas-Fe complexes achieved loading capacities for iron(II) between 2.5 and 12 mg g-1and LF loading capacities between 250 and 690 mg g-1, depending upon initial Fe2+ concentrations and LF ratios. The LF-S.NaCas complex mixtures appeared as smooth cubic particles in SEM, and gradually aggregated to amorphous particles as th iron(II) concentration increased due to iron-facilitated cross-linking. The complexation significantly improved LF thermal stability and addressed the poor solubility of iron(II) under neutral pH. After thermal treatment (95 °C, 5 min), the rehydrated complexes retained 68%-90% LF, with <10% iron(II) release. Circular dichroism spectra showed the secondary structure of the complexed LF was well retained during thermal treatment. This thermally stable system showed great potential in LF thermal protection and iron(II) fortification.

5.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878333

ABSTRACT

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Subject(s)
Acid Rain , Cadmium , Nitrogen , Populus , Rhizosphere , Seedlings , Soil Microbiology , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Populus/drug effects , Populus/microbiology , Populus/growth & development , Soil Pollutants/toxicity , Soil Pollutants/analysis , Seedlings/drug effects , Seedlings/growth & development , Seedlings/microbiology , Nitrogen/analysis , Soil/chemistry , Microbiota/drug effects , Hydrogen-Ion Concentration , Bacteria/drug effects , Fungi/drug effects
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124122, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38479230

ABSTRACT

Detection of endogenous CO (carbon monoxide) is an interesting topic in biology because it has been discovered as a messenger for signal transduction and therapeutic effects in vital biological activities. Fluorescence imaging has proven a powerful tool for detecting endogenous CO, which drives the development of low-cost and easy-to-use fluorescent probes. In this study, four azobenzene derivatives (A1, A2, A3, and A4) with various substituents were reported, including their geometric structures, photophysical parameters, and spectral responses to Cu2+ and CO. The relationship between substituent structure and performance was discussed along with Cu2+ quenching and CO sensing mechanisms. The optimal probe (A1), which had no substituent, efficiently quenched fluorescence in the presence of Cu2+, with its PLQY decreased from 0.33 to 0.02, PLQY = photoluminescence quantum yield. Upon CO deoxidization, A1's fluorescence could be recovered (PLQY recovered to 0.32) within 180 s. Its sensing mechanism was static by forming a non-fluorescent complex with Cu2+ (with a stoichiometric ratio of 1:1). The bioimaging performance of A1 for endogenous CO in HeLa cells was reported.


Subject(s)
Copper , Fluorescent Dyes , Humans , HeLa Cells , Copper/chemistry , Fluorescent Dyes/chemistry , Optical Imaging , Carbon Monoxide , Spectrometry, Fluorescence
7.
Plant Cell Environ ; 47(2): 585-599, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37899642

ABSTRACT

A number of invasive plant species, such as Alternanthera philoxeroides, have been documented to be able to accumulate trace metal elements in their tissues. Since metal accumulation in plants can serve as a defence against herbivores, we hypothesized that metal pollution will increase herbivore resistance of metal-accumulating invasive plant species and such a benefit will grant them a competitive advantage over local co-occurring plants. In this study, we compared the differences in plant growth and herbivore feeding preference between A. philoxeroides and its native congener Alternanthera sessilis in single and mixed cultures with and without soil cadmium (Cd) pollution. The results showed that A. philoxeroides plants were more tolerant to Cd stress and accumulated more Cd in the leaves than A. sessilis. Cd exposure increased the resistance of A. philoxeroides against a specialist and a generalist herbivore compared with A. sessilis. Competition experiments indicated that Cd stress largely increased the competitive advantage of A. philoxeroides over A. sessilis with or without herbivore pressures. The differences in herbivore resistance between the two plant species under soil Cd stress are most likely due to the deterring effect of Cd accumulation and Cd-enhanced mechanical defences rather than changes in leaf specialized metabolites.


Subject(s)
Alligators and Crocodiles , Amaranthaceae , Animals , Cadmium/toxicity , Herbivory , Plants , Introduced Species , Soil
8.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834210

ABSTRACT

Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.


Subject(s)
Transcriptome , Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/metabolism , Plant Breeding , Metabolome , Flavonoids/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
9.
Food Res Int ; 173(Pt 1): 113245, 2023 11.
Article in English | MEDLINE | ID: mdl-37803558

ABSTRACT

The lipid-lowering effect of dry beans and their impact on lipid and cholesterol metabolism have been established. This study investigates the underlying mechanisms of this effect and explore how the structural integrity of processed beans influences their ability to modulate lipolysis using the INFOGEST static in vitro digestion model. Dietary fiber (DF) fractions were found to decrease lipolysis by increasing the digesta viscosity, leading to depletion-flocculation and/or coalescence of lipid droplets. Bean flours exhibited a more pronounced reduction in lipolysis compared to DF. Furthermore, different levels of bean structural integrity showed varying effects on modulating lipolysis, with medium-sized bean particles demonstrating a stronger reduction. Hydrothermal treatment compromised the ability of beans to modulate lipid digestion, while hydrostatic-pressure treatment (600 MPa/5min) enhanced the effect. These findings highlight that the lipid-lowering effect of beans is not solely attributed to DF but also to the overall bean matrix, which can be manipulated through processing techniques.


Subject(s)
Phaseolus , Phaseolus/chemistry , Dietary Fiber/metabolism , Lipolysis , Lipids , Digestion
10.
Food Hydrocoll ; 1452023 Dec.
Article in English | MEDLINE | ID: mdl-37545760

ABSTRACT

Effective delivery of the bioactive protein, lactoferrin (LF), remains a challenge as it is sensitive to environmental changes and easily denatured during heating, restricting its application in functional food products. To overcome these challenges, we formulated novel polyelectrolyte ternary complexes of LF with gelatin (G) and negatively charged polysaccharides, to improve the thermal stability of LF with retained antibacterial activity. Linear, highly charged polysaccharides were able to form interpolymeric complexes with LF and G, while coacervates were formed with branched polysaccharides. A unique multiphase coacervate was observed in the gum Arabic GA-LF-G complex, where a special coacervate-in-coacervate structure was found. The ternary complexes made with GA, soy soluble polysaccharide (SSP), or high methoxyl pectin (HMP) preserved the protein structures and demonstrated enhanced thermal stability of LF. The GA-LF-G complex was especially stable with >90% retention of the native LF after treatment at 90 °C for 2 min in a water bath or at 145 °C for 30 s, while the LF control had only ~ 7% undenatured LF under both conditions. In comparison to untreated LF, LF in ternary complex retained significant antibacterial activity on both Gram-positive and Gram-negative bacteria, even after heat treatment. These ternary complexes of LF maintain the desired functionality of LF, thermal stability and antibacterial activity, in the final products. The ternary complex structure, particularly the multiphase coacervate, may serve as a template for the encapsulation and stabilization of other bioactives and peptides.

11.
Food Hydrocoll ; 1392023 May.
Article in English | MEDLINE | ID: mdl-37546699

ABSTRACT

Thaumatin, a potent sweet tasting protein extracted from the Katemfe Plant, is emerging as a natural alternative to synthetic non-nutritive sweeteners and flavor enhancer. As a food additive, its stability within the food matrix during thermal processing is of great interest to the food industry. When heated under neutral or basic conditions, thaumatin was found to lose its sweetness due to protein aggregation caused by sulfhydryl catalyzed disulfide bond interchange. At lower pH, while thaumatin was also found to lose sweetness after heating, it does so at a slower rate and shows more resistance to sweetness loss. SDS-PAGE indicated that thaumatin fragmented into multiple smaller pieces under heating in acidic pH. Using BEMPO-3, a lipophilic spin trap, we were able to detect the presence of a free-radical within the hydrophobic region of the protein during heating. Protein carbonyl content, a byproduct of protein oxidation, also increased upon heating, providing additional evidence for protein cleavage by a radical pathway. Hexyl gallate successfully inhibited the radical generation as well as protein carbonyl formation of thaumatin during heating.

12.
Front Plant Sci ; 14: 1185449, 2023.
Article in English | MEDLINE | ID: mdl-37538062

ABSTRACT

Plant root pathogens invade the soil around plant roots, disturbing the systemic balance, reducing plant defenses, and causing severe disease. At present, there are few studies on the severity of plant diseases caused by pathogen invasion in different seasons and how pathogens affect root microecology. In this study, we compared the levels of nutrients in the root tissues of the two groups of plants. We used 16S and ITS amplicon sequencing with Illumina NovaSeq 6000 to compare seasonal changes in the composition and structure of microbial communities from healthy roots of bamboo Bambusa pervariabilis × Dendrocalamopsis grandis and roots infected by the soilborne pathogen Fusarium proliferatum. We have found that the invasion of the pathogen led to a substantial decrease in nutrient elements in bamboo roots, except for nitrogen. The pathogen presence correlated with seasonal changes in the bamboo root microbiome and decreased bacterial richness in diseased plants. The root microbial community structure of healthy plants was more stable than that of their diseased counterparts. Furthermore, we identified the lesion area and relative abundance of F. proliferatum were significant predictors of disease progression. The potassium tissue content and the disease lesion area were identified as factors linked with the observed changes in the bamboo root microbiome. This study provides a theoretical foundation for understanding the seasonal dynamics F. proliferatum, an economically important soilborne pathogen of hybrid bamboo grown in Sichuan Province, China.

13.
Anatol J Cardiol ; 27(7): 398-407, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37288854

ABSTRACT

BACKGROUND: Cardiac fibrosis increases with age. Fibroblast activation plays an essential role in cardiac fibrosis. Histone modifications are involved in various chromatin-dependent processes. Attenuation of the histone H3 trimethylation on lysine 27 demethylase UTX by RNA interference or heterozygous mutation extends lifespan in worm. The objective of this study was to explore whether epigenetic silencing of UTX mitigates aging-associated cardiac fibrosis. METHODS: Middle-aged mice (15 months old) were used and started to receive adeno-associated virus-scrambled-small hairpin RNA and adeno-associated virus-UTX-small hairpin RNA every 3 months from 15 months to 21 months, respectively. The mice were euthanized at 24 months of age (length of the study). RESULTS: Adeno-associated virus-UTX-small hairpin RNA delivery significantly attenu-ated aging-associated increase in blood pressure, especially in diastolic blood pressure, indicating silencing of UTX rescued aging-associated cardiac dysfunction. Aging-associated cardiac fibrosis is characterized by fibroblast activation and abundant extracellular matrix deposition, including collagen deposition and alpha smooth muscle actin activation. Silencing of UTX abolished collagen deposition and alpha smooth muscle actin activation, decreased serum transforming growth factor ß, blocked cardiac fibro blast s-to- myofi brobl asts trans-differentiation by elevation of cardiac resident mature fibroblast markers, TCF21, and platelet-derived growth factor receptor alpha, which are important proteins for maintaining cardiac fibroblast physiological function. In the mechanistic study, adeno-associated virus-UTX-small hairpin RNA blocked transforming growth factor ß-induced cardiac fibro blast s-to- myofi brobl asts trans-differentiation in isolated fibroblasts from 24-month-old mouse heart. The same results demonstrated as the in vivo study. CONCLUSIONS: Silencing of UTX attenuates aging-associated cardiac fibrosis via blocking cardiac fibroblasts-to-myofibroblasts transdifferentiation and consequently attenuates aging-associated cardiac dysfunction and cardiac fibrosis.


Subject(s)
Cardiomyopathies , Heart Diseases , Mice , Animals , Myofibroblasts/metabolism , Myofibroblasts/pathology , Myocardium/pathology , Actins/metabolism , Signal Transduction , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Collagen/metabolism , Aging , Heart Diseases/metabolism , Transforming Growth Factor beta/metabolism , Fibrosis , RNA, Small Interfering , Cell Transdifferentiation , Transforming Growth Factor beta1 , Cells, Cultured
14.
Plant Dis ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142964

ABSTRACT

Taxus chinensis var. mairei is the endemic, endangered, and first-class protected tree species in China. This species is considered as an important resource plant because it can produce Taxol which is an effective medicinal compound against various cancers (Zhang et al., 2010). Stem blight was observed in two plant nurseries in Ya'an (102°44'E,30°42'N), Sichuan province in April 2021. The symptoms first appeared as round brown spots on the stem. As the disease progressed, the damaged area gradually expanded into an oval or irregular shape, which was dark brown. About 800 square meters of planting area were investigated and the disease incidence was up to approximately 64.8%. Twenty obviously symptomatic stems which exhibited the same symptoms as above were collected from 5 different trees in the nursery. To isolate the pathogen, the symptom margin was cut into small blocks (5 x 5 mm), and the blocks were surface sterilized in 75% ethanol for 90 s and 3% NaClO solution for 60 s . Finally incubated on Potato Dextrose Agar (PDA) at 28℃ for 5 days. Ten pure cultures were isolated by transferring hyphal and the three strains (HDS06, HDS07 and HDS08) were selected as representative isolates for further study. Initially, colonies on the PDA of three isolates were white and cotton-like, and then gradually turned gray-black from the center. After 21 days, conidia were produced and were smooth-walled, single-celled, black, oblate, or spherical, measuring 9.3 to 13.6 × 10.1 to 14.5 µm in size (n = 50). Conidia were present at the tip of conidiophores on hyaline vesicles. These morphological features were generally consistent with those of N. musae (Wang et al., 2017). To validate the identification, DNA were extracted from the three isolates, followed by the amplification of transcribed spacer region of rDNA (ITS), the translation elongation factor EF-1 (TEF-1), and the Beta-tubulin (TUB2) sequences with the respective primer pairs ITS1/ITS4 (White et al., 1990), EF-728F/EF-986R (Vieira et al., 2014) and Bt2a/Bt2b (O'Donnell et al., 1997) .The sequences were deposited in GenBank with the accession numbers ON965533, OP028064, OP028068, OP060349, OP060353, OP060354, OP060350, OP060351 and OP060352, respectively. Phylogenetic analysis of combined ITS, TUB2, and TEF genes using the Mrbayes inference method showed that the three isolates clustered with Nigrospora musae as a distinct clade (Fig. 2). Combine with morphological characteristics and phylogenetic analysis, three isolates were identified as N. musae. 30 2-year-old healthy potted plants of T. chinensis were used for pathogenicity test. 25 of these plants were inoculated by injecting 10 µL of the conidia suspension (1 × 106 conidia/mL) into stems and then wrap around the seal to moisturize. The remaining 5 plants were injected with the same amount of sterilized distilled water as a control. Finally, all potted plants were placed in a greenhouse at 25°C and 80% relative humidity. After 2 weeks, the inoculated stems developed lesions similar to those observed in the field, whereas controls were asymptomatic. N. musae was re-isolated from the infected stem and identified by both morphological characteristics and DNA sequence analysis. The experiments repeated three times showed similar results. As far as we know, this is the first report of N. musae causing T. chinensis stem blight in the world. The identification of N. musae could provide a certain theoretical basis for field management and further research of T. chinensis.

15.
Plant J ; 115(4): 1100-1113, 2023 08.
Article in English | MEDLINE | ID: mdl-37177875

ABSTRACT

Phyllosphere-associated microbes play a crucial role in plant-pathogen interactions while their composition and diversity are strongly influenced by drought stress. As dioecious plant species exhibited secondary dimorphism between the two sexes in response to drought stress, whether such difference will lead to sex-specific differences in phyllosphere microbiome and associated pathogen resistance between male and female conspecifics is still unknown. In this study, we subjected female and male full siblings of a dioecious poplar species to a short period of drought treatment followed by artificial infection of a leaf pathogenic fungus. Our results showed that male plants grew better than females with or without drought stress. Female control plants had more leaf lesion area than males after pathogen infection, whereas drought stress reversed such a difference. Further correlation and in vitro toxicity tests suggested that drought-mediated sexual differences in pathogen resistance between the two plant sexes could be attributed to the shifts in structure and function of phyllosphere-associated microbiome rather than the amount of leaf main defensive chemicals contained in plant leaves. Supportively, the microbiome analysis through high-throughput sequencing indicated that female phyllosphere enriched a higher abundance of ecologically beneficial microbes that serve as biological plant protectants, while males harbored abundant phytopathogens under drought-stressed conditions. The results could provide potential implications for the selection of suitable poplar sex to plants in drought or semi-drought habitats.


Subject(s)
Microbiota , Populus , Droughts , Plant Leaves/physiology , Fungi , Populus/genetics
16.
Clin Pediatr (Phila) ; 62(11): 1385-1389, 2023 11.
Article in English | MEDLINE | ID: mdl-36908098

ABSTRACT

Acute focal bacterial nephritis (AFBN) is a kidney disease characterized by a localized bacterial infection that manifests as an inflammatory mass. Most children with AFBN have nonspecific symptoms including fever, vomiting, and abdominal discomfort, and some develop neurological symptoms such as meningeal irritation, unconsciousness, and seizures as their condition worsens. This was 2 cases of AFBN with central nervous system manifestations in children, and we analyzed its possible mechanisms of the clinical and radiographic features. We experience 2 very unusual cases of AFBN which were linked to central nervous system abnormalities. A 6-year-old boy with AFBN and clinically moderate ncephalitis/encephalopathy with a reversible splenial lesion (MERS) presented with neurological symptoms, including unconsciousness and convulsions. The second case involved an 8-year-old child with AFBN-associated acute encephalopathy who exhibited neurological symptoms, including unconsciousness. According to previous research, AFBN is linked to central nervous system impairment. As a result, when a clinician meets a patient with an inexplicable fever caused by a neurological condition, he should pay attention to this diagnosis of AFBN and follow it in the abdominal graph.


Subject(s)
Bacterial Infections , Brain Diseases , Nephritis , Male , Child , Humans , Nephritis/diagnosis , Nephritis/microbiology , Nephritis/pathology , Central Nervous System/pathology , Brain Diseases/complications , Bacterial Infections/complications , Seizures , Fever/etiology , Unconsciousness/complications , Magnetic Resonance Imaging
17.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902308

ABSTRACT

Phomopsis capsici (P. capsici) causes branch blight of walnuts, which leads to significant economic loss. The molecular mechanism behind the response of walnuts remains unknown. Paraffin sectioning and transcriptome and metabolome analyses were performed to explore the changes in tissue structure, gene expression, and metabolic processes in walnut after infection with P. capsici. We found that P. capsici caused serious damage to xylem vessels during the infestation of walnut branches, destroying the structure and function of the vessels and creating obstacles to the transport of nutrients and water to the branches. The transcriptome results showed that differentially expressed genes (DEGs) were mainly annotated in carbon metabolism and ribosomes. Further metabolome analyses verified the specific induction of carbohydrate and amino acid biosynthesis by P. capsici. Finally, association analysis was performed for DEGs and differentially expressed metabolites (DEMs), which focused on the synthesis and metabolic pathways of amino acids, carbon metabolism, and secondary metabolites and cofactors. Three significant metabolites were identified: succinic semialdehyde acid, fumaric acid, and phosphoenolpyruvic acid. In conclusion, this study provides data reference on the pathogenesis of walnut branch blight and direction for breeding walnut to enhance its disease resistance.


Subject(s)
Juglans , Juglans/genetics , Transcriptome , Plant Breeding , Metabolome
18.
Plant Dis ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995770

ABSTRACT

Star anise (Illicium verum Hook. f.), a genus of star anise in the family Magnoliaceae, is an important cash crop of "medicinal and food" origin, mainly from China. In August 2021, root rot of I. verum was first observed on more than 80% of the plants grown within a 500 hectares area in Wenshan city, Yunnan Province. At the early stage of the disease, the phloem of the root was dark yellow-brown, and the leaves turn yellow. With further disease development, the whole root became black (Fig. 1a, 1b), and the leaves gradually fall off, affecting the growth, yield and eventually caused death of the whole plant. A total of 20 root samples were collected from typical symptomatic plant roots with 20 years old in Wenshan City (23°18'12″N, 103°56'98″E) and were cut into 2 × 2 mm pieces at the junction of infected and healthy tissue. Each sample was surface-sterilized with 3% NaClO and 75% alcohol for 60 s before rinsing three times with distilled water. The sterile filter paper (5×5 cm) was used to dry the tissue, and samples were cultured on potato dextrose agar (PDA) amended with streptomycin sulfate (50 µg/ml). Plates were incubated at 25°C in the dark in the incubator. From 9 isolates obtained in culture, 7 exhibited the morphology described by Boerema et al. (Boerema et al. 2004) for Setophoma sp. The hyphae were hyaline and septate (Fig.1c). After 14 days of culture on V8 juice agar, white round colonies are formed, but there is no groove in the middle of the colonies (Fig.1d), and transparent, oval, or cylindrical conidia were produced, 6.0-8.0 x 2.5 to 4.0 um (Fig.1e). DNA was extracted from a representative isolate BJGF-04 for molecular identification using a fungal genomic DNA extraction kit (Solarbio, Beijing, China). Polymerase chain reactions (PCRs) were performed with primers ITS1/ITS4 for the internal transcribed spacer (ITS) region (White et al. 1990) and primers T1/ß-Sandy-R for the ß-tubulin gene (TUB) region (Yang et al. 2017) and primers NL3/ LR5 for 28S large subunit rDNA (LSU) region (Hu et al. 2021) and NS1/ NS4 for 5.8S large subunit rDNA (SSU) region (Mahesha et al. 2021). Newly generated representative sequences were deposited in GenBank: ITS sequence (ON645256), TUB sequence (ON854484), and LSU sequence (ON644445), SSU sequence (ON644451). were sequenced and blasted, showing 99 to 100% sequence homology with known S. terrestris. Pathogenicity was performed using one-year asymptomatic plants of I. verum. A conidial suspension (1 x 106 conidia/ml) collected from V8 juice cultures with 0.05% Tween buffer was poured at a volume of 10 ml/plant. Three individual seedlings were used as replicates for each treatment, and sterile water was used as the negative control. All plants were placed in an artificial climate incubator at 25°C under 90% relative humidity. After 20 days, all inoculated plants showed symptoms identical to those described above, whereas controls remained healthy. Setophoma terrestris was reisolated from the infected roots, which was confirmed by morphological and molecular identification, which completed Koch's postulates. To our knowledge, this is the first report of S. terrestris as a causal agent of root rot on I. verum in China.

19.
Article in English | MEDLINE | ID: mdl-36927435

ABSTRACT

OBJECTIVE: Fat cells-derived extracellular vesicles (FC-EVs) play a role in regulating the tumor microenvironment in cancers by transporting RNAs. MicroRNAs (miRNAs) are vital regulators of cancer development. This study was conducted to explore the role of FC-EVs in the proliferation and migration of non-small cell lung cancer (NSCLC) cells, providing targets for NSCLC treatment. METHODS: The obese mouse model was established via high-fat diet (HFD), followed by separation and characterization of FC-EVs (HFD-EVs). The levels of miR-99a-5p, precursor-miR-99a-5p, and heparan sulfate-glucosamine 3-sulfotransferase 3B1 (HS3ST3B1) were measured by RT-qPCR or Western blot assay. Cell proliferation and migration were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and wound healing assays. The expression of Cy3-labeled miR-99a-5p in A549 cells (one NSCLC cell line) was observed via confocal microscopy. The binding of miR-99a-5p to HS3ST3B1 was analyzed by the dual luciferase assay. Rescue experiments were performed to confirm the role of HS3ST3B1 in NSCLC cells. RESULTS: miR-99a-5p was upregulated in adipose tissues, FCs, and HFD-EVs. HFD-EVs mitigated the proliferation and migration of NSCLC cells. HFD-EVs transported miR-99a-5p into A549 cells, which upregulated miR-99a-5p expression and inhibited HS3ST3B1 expression in A549 cells. HS3ST3B1 overexpression reversed the inhibition of HFD-EVs on the proliferation and migration of NSCLC cells. CONCLUSION: HFD-EVs transported miR-99a-5p into NSCLC cells and inhibited HS3ST3B1, thereby inhibiting proliferation and migration of NSCLC cells.

20.
J Exp Bot ; 74(6): 2188-2202, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36738293

ABSTRACT

Microorganisms associated with the phyllosphere play a crucial role in protecting plants from diseases, and their composition and diversity are strongly influenced by heavy metal contaminants. Dioecious plants are known to exhibit sexual dimorphism in metal accumulation and tolerance between male and female individuals. Hence, in this study we used male and female full-siblings of Populus deltoides to investigate whether the two sexes present differences in their phyllosphere microbiome structures and in their associated resistance to the leaf pathogenic fungus Pestalotiopsis microspora after exposure to excess soil cadmium (Cd). We found that Cd-treated male plants grew better and accumulated more leaf Cd than females. Cd stress reduced the lesion areas on leaves of both sexes after pathogen infection, but male plants exhibited better resistance than females. More importantly, Cd exposure differentially altered the structure and function of the phyllosphere microbiomes between the male and female plants, with more abundant ecologically beneficial microbes and decreased pathogenic fungal taxa harbored by male plants. In vitro toxicity tests suggested that the sexual difference in pathogen resistance could be attribute to both direct Cd toxicity and indirect shifts in the phyllosphere microbiome. This study provides new information relevant for understanding the underlying mechanisms of the effects of heavy metals involved in plant-pathogen interactions.


Subject(s)
Metals, Heavy , Microbiota , Populus , Cadmium/toxicity , Soil , Fungi
SELECTION OF CITATIONS
SEARCH DETAIL