Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(1): 105534, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072050

ABSTRACT

Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.


Subject(s)
Carcinogenesis , Cell Transdifferentiation , Cellular Reprogramming Techniques , Colorectal Neoplasms , Induced Pluripotent Stem Cells , Humans , Carcinogenesis/pathology , Cell Differentiation/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy
2.
iScience ; 26(5): 106647, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168574

ABSTRACT

Immune rejection can be reduced using immunosuppressants which are not viable for premature infants. However, desensitization can induce immune tolerance for premature infants because of underdeveloped immune system. The fetuses of Wistar rats at 15-17 days gestation were injected via hOPCs-1 into brain, muscles, and abdomen ex utero and then returned while the fetuses of control without injection. After 6 weeks of desensitization, the brain and muscles were transplanted with hOPCs-1, hNSCs-1, and hOPCs-2. After 10 and 34 weeks of desensitization, hOPCs-1 and hNSCs-1 in desensitized groups was higher than that in the control group while hOPCs-2 were rejected. Treg, CD4CD28, CD8CD28, and CD45RC between the desensitization and the control group differed significantly. Inflammatory cells in group with hOPCs-1 and hNSCs-1 was lower than that in the control group. hOPCs-1 can differentiate into myelin in desensitized groups. Wistar rats with desensitization developed immune tolerance to desensitized and transplanted cells.

SELECTION OF CITATIONS
SEARCH DETAIL