Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Small ; : e2400410, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721986

ABSTRACT

The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.

2.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
3.
Anal Methods ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738557

ABSTRACT

Dextromethorphan (DXM) is a widely utilized central antitussive agent, which is frequently abused by individuals seeking its recreational effect. But DXM overdose can cause some adverse effects, including brain damage, loss of consciousness, and cardiac arrhythmias, and hence its detection is significant. Herein, an electrochemical sensor based on a Cu-coordinated molecularly imprinted polymer (Cu-MIP) was fabricated for its detection. For constructing the sensor, nitrogen-doped carbon nanosheets (CCNs) were prepared through calcining chitin under an argon atmosphere, and molybdenum disulfide (MoS2) was allowed to grow on their surface. Subsequently, the obtained MoS2/CCNs composite was employed to modify a glassy carbon electrode (GCE), and the Cu-MIP was electrodeposited on the electrode in a Cu-1,10-phenanthroline (Cu-Phen) solution containing DXM, where Cu2+ played a role in facilitating electron transfer and binding DXM. Due to the large specific surface area, good electrocatalytic properties and recognition of the resulting composite, the resulting Cu-MIP/MoS2/CCNs/GCE showed high selectivity and sensitivity. Under optimized experimental conditions, the peak current of DXM and its concentration exhibited a good linear relationship over the concentration range of 0.1-100 µM, and the limit of detection (S/N = 3) was 0.02 µM. Furthermore, the electrochemical sensor presented good stability, and it was successfully used for the determination of DXM in pharmaceutical, human serum and urine samples.

4.
Article in English | MEDLINE | ID: mdl-38767995

ABSTRACT

The arduous and costly journey of drug discovery is increasingly intersecting with computational approaches, which promise to accelerate the analysis of bioassays and biomedical literature. The critical role of microRNAs (miRNAs) in disease progression has been underscored in recent studies, elevating them as potential therapeutic targets. This emphasizes the need for the development of sophisticated computational models that can effectively identify promising drug targets, such as miRNAs. Herein, we present a novel method, termed Duplex Link Prediction (DLP), rooted in subspace segmentation, to pinpoint potential miRNA targets. Our approach initiates with the application of the Network Enhancement (NE) algorithm to refine the similarity metric between miRNAs. Thereafter, we construct two matrices by pre-loading the association matrix from both the drug and miRNA perspectives, employing the K Nearest Neighbors (KNN) technique. The DLSR algorithm is then applied to predict potential associations. The final predicted association scores are ascertained through the weighted mean of the two matrices. Our empirical findings suggest that the DLP algorithm outperforms current methodologies in the realm of identifying potential miRNA drug targets. Case study validations further reinforce the real-world applicability and effectiveness of our proposed method. The code of DLP is freely available at https://github.com/kaizheng-academic/DLP.

5.
Article in English | MEDLINE | ID: mdl-38771192

ABSTRACT

Upconverting nanoparticles (UCNPs) doped with Yb3+ and Tm3+ are near-infrared (NIR) to ultraviolet (UV) transducers that can be used for NIR-controlled drug delivery. However, due to the low quantum yield of upconversion, high laser powers and long irradiation times are required to trigger this drug release. In this work, we report the one-step synthesis of a nanocomposite consisting of a LiYbF4:Tm3+@LiYF4 UCNP coated with mesoporous UV-breakable organosilica shells of various thicknesses. We demonstrate that a thin shell accelerates the breakage of the shell at 1 W/cm2 NIR light exposure, a laser power up to 9 times lower than that of conventional systems. When the mesopores are loaded with hydrophobic vitamin D3 precursor 7-dehydrocholesterol (7-DH), shell breakage results in subsequent cargo release. Its minimal toxicity in HeLa cells and successful internalization into the cell cytoplasm demonstrate its biocompatibility and potential application in biological systems. The tunability of this system due to its simple, one-step synthesis process and its ability to operate at low laser powers opens up avenues in UCNP-powered NIR-triggered drug delivery toward a more scalable, flexible, and ultimately translational option.

6.
Nutr Neurosci ; : 1-9, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753998

ABSTRACT

INTRODUCTION: Oxidative stress (OS) has been linked to neurodegenerative diseases in numerous epidemiological studies; however, whether it is a pathogenesis or a downstream factor remains controversial. METHODS: A two-sample bidirectional Mendelian randomization (MR) analysis was implemented to examine evidence of causality of 15 OS injury markers with 3 major neurodegenerative diseases using available genome-wide association studies statistics. As a main approach, inverse-variance weighted (IVW) analysis was performed. The weighted-median (WM) analysis was used to validate the relationship. In order to investigate the existence of horizontal pleiotropy and correct the IVW estimate, the Radial MR approach was applied. To gauge the consistency and robustness of the findings, several sensitivity and pleiotropy analyses were used. For this analysis, p < 0.05 indicates a nominally causal association; according to the Bonferroni correction test, p < 0.0011 indicates a statistically significant causal association. RESULTS: Via IVW and WM, in directional MR, it was genetically predicted that zinc was nominally causally correlated with the risk of Parkinson's disease but not after Bonferroni correction test; alpha-tocopherol was nominally causally correlated with the risk of Amyotrophic lateral sclerosis (ALS) but not after Bonferroni correction test; furthermore, in reverse MR, it was genetically predicted that Alzheimer's disease was causally correlated with uric acid but not after Bonferroni correction test. These above findings were stable across sensitivity and pleiotropy analyses. CONCLUSIONS: Based on the current study, there is no authentic genetic causal association between OS biomarkers and neurodegenerative diseases. The complex relationship is required to be confirmed in future experimental research.

7.
J Clin Invest ; 134(9)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38690728

ABSTRACT

Hypothermia is commonly used to protect donor hearts during transplantation. However, patients transplanted with aged donor hearts still have severe myocardial injury and decreased survival rates, but the underlying mechanism remains unknown. Because aged hearts are not considered suitable for donation, the number of patients awaiting heart transplants is increasing. In this study, we examined whether hypothermic cardioprotection was attenuated in aged donor hearts during transplantation and evaluated potential therapeutic targets. Using a rat heart transplantation model, we found that hypothermic cardioprotection was impaired in aged donor hearts but preserved in young donor hearts. RNA-Seq showed that cold-inducible RNA-binding protein (Cirbp) expression was decreased in aged donor hearts, and these hearts showed severe ferroptosis after transplantation. The young donor hearts from Cirbp-KO rats exhibited attenuated hypothermic cardioprotection, but Cirbp overexpression in aged donor hearts ameliorated hypothermic cardioprotection. Cardiac proteomes revealed that dihydroorotate dehydrogenase (DHODH) expression was significantly decreased in Cirbp-KO donor hearts during transplantation. Consequently, DHODH-mediated ubiquinone reduction was compromised, thereby exacerbating cardiac lipid peroxidation and triggering ferroptosis after transplantation. A cardioplegic solution supplemented with CIRBP agonists improved hypothermic cardioprotection in aged donor hearts, indicating that this method has the potential to broaden the indications for using aged donor hearts in transplantation.


Subject(s)
Ferroptosis , Heart Transplantation , Animals , Rats , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male , Tissue Donors , Hypothermia, Induced , Aging/metabolism , Aging/genetics
8.
Talanta ; 276: 126243, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38749160

ABSTRACT

Herein, we fabricated an electrochemical (EC) and UV-visible absorption (UV-vis) dual mode split-type immunoassay for the detection of 17ß-estradiol (E2), which was mediated by liposome encapsulated methylene blue (MB@lip). MB molecule acted as the probe in the EC and UV-vis absorption dual mode detections, and its release was controlled by liposome. The competitive immune recognition was conducted between the E2 in the sample and E2 conjugated bovine serum protein (E2-BSA) adsorbed on the 96-wells plate in combining with E2 antibody labeled with MB@lip (E2-Ab/MB@lip). MB molecule could be released from the resulting immune composite of E2-BSA/E2-Ab/MB@lip in the presence of Triton X-100, and quantified by UV-vis and EC methods. The three-dimensional cross-linked reduced graphene oxide/Ti3C2 (3D-rGO/Ti3C2) aerogel was prepared through hydrothermal method, then complexed with the electroactive anthraquinone (AQ) and used as the electrode modified material. The AQ/3D-rGO/Ti3C2 composite had high surface area and provided abundant adsorption sites for MB, and the displacement/competitive behavior between AQ and MB could dexterously achieve the ratiometric EC detection of E2. In addition, the inherent blue color of MB allowed it to be analyzed by UV-vis absorption method. The proposed dual mode detection method exhibited broad linear ranges of 0.1 pg mL-1 to 50 ng mL-1 (by UV-vis) and 0.03 pg mL-1 to 50 ng mL-1 (by EC) for E2 detection, and the detection limits were 0.023 pg mL-1 (S/N = 3) and 8.0 fg mL-1 (S/N = 3), respectively. Moreover, the proposed immunoassay exhibited good practicability and was applied to monitor E2 in milk and serum successfully.

9.
Eur Heart J ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607560

ABSTRACT

BACKGROUND AND AIMS: Patients with acute myeloid leukaemia (AML) suffer from severe myocardial injury during daunorubicin (DNR)-based chemotherapy and are at high risk of cardiac mortality. The crosstalk between tumour cells and cardiomyocytes might play an important role in chemotherapy-related cardiotoxicity, but this has yet to be demonstrated. This study aimed to identify its underlying mechanism and explore potential therapeutic targets. METHODS: Cardiac tissues were harvested from an AML patient after DNR-based chemotherapy and were subjected to single-nucleus RNA sequencing. Cardiac metabolism and function were evaluated in AML mice after DNR treatment by using positron emission tomography, magnetic resonance imaging, and stable-isotope tracing metabolomics. Plasma cytokines were screened in AML mice after DNR treatment. Genetically modified mice and cell lines were used to validate the central role of the identified cytokine and explore its downstream effectors. RESULTS: In the AML patient, disruption of cardiac metabolic homeostasis was associated with heart dysfunction after DNR-based chemotherapy. In AML mice, cardiac fatty acid utilization was attenuated, resulting in cardiac dysfunction after DNR treatment, but these phenotypes were not observed in similarly treated tumour-free mice. Furthermore, tumour cell-derived interleukin (IL)-1α was identified as a primary factor leading to DNR-induced cardiac dysfunction and administration of an anti-IL-1α neutralizing antibody could improve cardiac functions in AML mice after DNR treatment. CONCLUSIONS: This study revealed that crosstalk between tumour cells and cardiomyocytes during chemotherapy could disturb cardiac energy metabolism and impair heart function. IL-1α neutralizing antibody treatment is a promising strategy for alleviating chemotherapy-induced cardiotoxicity in AML patients.

10.
Biol Pharm Bull ; 47(4): 848-855, 2024.
Article in English | MEDLINE | ID: mdl-38616115

ABSTRACT

In this study, we prepared antisense oligonucleotide (ASO)-encapsulated nanoparticles (NPs) with a suitable profile for oral administration for the treatment of inflammatory bowel disease (IBD). We chose a water-in-oil-in-water (w/o/w) method to prepare the NPs using poly(lactide-co-glycolide) as a matrix and Pluronic as a stabilizer. The obtained NPs had a suitable diameter (158 nm) for the penetration of the mucus layer, endocytic uptake by enterocytes, and accumulation in inflammatory lesions in the intestine. The amount of ASOs in the NPs was relatively large (6.41% (w/w)). When the NPs were stably dispersed in solutions that mimicked gastrointestinal (GI) juice, minimal leakage of ASOs was demonstrated over the required period. The NPs were administered orally to mice with colitis induced by dextran sodium sulfate, which reduced target gene expression in the colons and rectums of the mice, whereas naked ASO administration caused no reduction in gene expression. Thus, the NPs have the potential of promising oral carriers of ASOs for the treatment of IBD that specifically target inflammatory lesions in the GI tract, thereby reducing the non-specific toxic effects of ASOs.


Subject(s)
Inflammatory Bowel Diseases , Nanoparticles , Animals , Mice , Oligonucleotides, Antisense , Inflammatory Bowel Diseases/drug therapy , Administration, Oral , Water
11.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610389

ABSTRACT

As the Internet of Things (IoT) becomes more widespread, wearable smart systems will begin to be used in a variety of applications in people's daily lives, not only requiring the devices to have excellent flexibility and biocompatibility, but also taking into account redundant data and communication delays due to the use of a large number of sensors. Fortunately, the emerging paradigms of near-sensor and in-sensor computing, together with the proposal of flexible neuromorphic devices, provides a viable solution for the application of intelligent low-power wearable devices. Therefore, wearable smart systems based on new computing paradigms are of great research value. This review discusses the research status of a flexible five-sense sensing system based on near-sensor and in-sensor architectures, considering material design, structural design and circuit design. Furthermore, we summarize challenging problems that need to be solved and provide an outlook on the potential applications of intelligent wearable devices.


Subject(s)
Internet of Things , Wearable Electronic Devices , Humans , Communication , Intelligence , Perception
12.
BMC Med ; 22(1): 174, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658988

ABSTRACT

BACKGROUND: Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS: We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS: Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1ß.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS: In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.


Subject(s)
Acrylamides , Angiogenesis Inhibitors , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Pyrimidines , Carcinoma, Non-Small-Cell Lung/drug therapy , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology , Acrylamides/therapeutic use , Acrylamides/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Retrospective Studies , Drug Resistance, Neoplasm/drug effects , Female , Male , Animals , Mice , Middle Aged , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Aged , Tumor Microenvironment/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Adult , Indoles/therapeutic use , Indoles/administration & dosage
13.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664789

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteocytes , Osteogenesis , Tropomyosin , Animals , Male , Mice , Adipogenesis , Cell Differentiation , Cells, Cultured , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism , Tropomyosin/metabolism , Tropomyosin/genetics
14.
Transl Oncol ; 44: 101933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507923

ABSTRACT

Hepatocellular carcinoma (HCC) is among the most prevalent and lethal cancers worldwide. The NDC80 kinetochore complex component NUF2 has been previously identified as up-regulating in HCC and associated with patient prognosis. However, the pathophysiological effects and molecular mechanisms of NUF2 in tumorigenesis remain unclear. In this study, we confirmed a significant increase in NUF2 expression in HCC tissues and established a correlation between high NUF2 expression and adverse outcomes in HCC patients. Through in vitro and in vivo experiments, we demonstrated that genetic inhibition of NUF2 suppressed the proliferation of HCC cells and disrupted the cell cycle. Further investigation into the molecular mechanisms revealed that NUF2 interacted with ERBB3, inhibiting its ubiquitination degradation, thus activating the PI3K/AKT signaling pathway and influencing cell cycle regulation. Overall, this study revealed the crucial role of NUF2 in promoting the malignant progression of HCC, suggesting its potential as both a prognostic biomarker and a therapeutic target for HCC.

15.
Pharm Res ; 41(4): 711-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538970

ABSTRACT

BACKGROUND: PEGasparaginase is known to be a critical drug for treating pediatric acute lymphoblastic leukemia (ALL), however, there is insufficient evidence to determine the optimal dose for infants who are less than one year of age at diagnosis. This international study was conducted to identify the pharmacokinetics of PEGasparaginase in infants with newly diagnosed ALL and gather insight into the clearance and dosing of this population. METHODS: Infants with ALL who received treatment with PEGasparaginase were included in our population pharmacokinetic assessment employing non-linear mixed effects modelling (NONMEM). RESULTS: 68 infants with ALL, with a total of 388 asparaginase activity samples, were included. PEGasparaginase doses ranging from 400 to 3,663 IU/m2 were administered either intravenously or intramuscularly. A one-compartment model with time-dependent clearance, modeled using a transit model, provided the best fit to the data. Body weight was significantly correlated with clearance and volume of distribution. The final model estimated a half-life of 11.7 days just after administration, which decreased to 1.8 days 14 days after administration. Clearance was 19.5% lower during the post-induction treatment phase compared to induction. CONCLUSION: The pharmacokinetics of PEGasparaginase in infants diagnosed under one year of age with ALL is comparable to that of older children (1-18 years). We recommend a PEGasparaginase dosing at 1,500 IU/m2 for infants without dose adaptations according to age, and implementing therapeutic drug monitoring as standard practice.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Infant , Humans , Adolescent , Child, Preschool , Asparaginase/pharmacokinetics , Asparaginase/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Drug Monitoring
16.
Angew Chem Int Ed Engl ; 63(22): e202403773, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38527962

ABSTRACT

Tunable-lifetime room-temperature phosphorescence (RTP) materials have been widely studied due to their broad applications. However, only few reports have achieved wide-range lifetime modulation. In this work, ultra-wide range tunable-lifetime efficient dark blue RTP materials were realized by doping methyl benzoate derivatives into polyvinyl alcohol (PVA) matrix. The phosphorescence lifetimes of the doped films can be increased from 32.8 ms to 1925.8 ms. Such wide range of phosphorescence lifetime modulation is extremely rare in current reports. Moreover, the phosphorescence emission of the methyl 4-hydroxybenzoate-doped film is located in the dark blue region and the phosphorescence quantum yield reaches as high as 15.4 %, which broadens their applications in organic optoelectronic information. Further studies demonstrated that the reason for the tunable lifetime was that the magnitude of the electron-donating ability of the substituent group modulates the HOMO-LUMO and singlet-triplet energy gap of methyl benzoate derivatives, as well as the ability to non-covalent interactions with PVA. Moreover, the potential applications of luminescent displays and optical anti-counterfeiting of these high-performance dark blue RTP materials have been conducted.

17.
Chem Biodivers ; : e202400584, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544421

ABSTRACT

Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.

18.
Sensors (Basel) ; 24(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475176

ABSTRACT

Elastic pressure sensors play a crucial role in the digital economy, such as in health care systems and human-machine interfacing. However, the low sensitivity of these sensors restricts their further development and wider application prospects. This issue can be resolved by introducing microstructures in flexible pressure-sensitive materials as a common method to improve their sensitivity. However, complex processes limit such strategies. Herein, a cost-effective and simple process was developed for manufacturing surface microstructures of flexible pressure-sensitive films. The strategy involved the combination of MXene-single-walled carbon nanotubes (SWCNT) with mass-produced Polydimethylsiloxane (PDMS) microspheres to form advanced microstructures. Next, the conductive silica gel films with pitted microstructures were obtained through a 3D-printed mold as flexible electrodes, and assembled into flexible resistive pressure sensors. The sensor exhibited a sensitivity reaching 2.6 kPa-1 with a short response time of 56 ms and a detection limit of 5.1 Pa. The sensor also displayed good cyclic stability and time stability, offering promising features for human health monitoring applications.

20.
J Am Chem Soc ; 146(12): 8425-8434, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488481

ABSTRACT

The precise design of catalytic metal centers with multiple chemical states to facilitate sophisticated reactions involving multimolecular activation is highly desirable but challenging. Herein, we report an ordered macroporous catalyst with heterovalent metal pair (HMP) sites comprising CuII-CuI on the basis of a microporous metal-organic framework (MOF) system. This macroporous HMP catalyst with proximity heterovalent dual copper sites, whose distance is controlled to ∼2.6 Å, on macropore surface exhibits a co-activation behavior of ethanol at CuII and alkyne at CuI, and avoids microporous restriction, thereby promoting additive-free alkyne hydroboration reaction. The desired yield enhances dramatically compared with the pristine MOF and ordered macroporous MOF both with solely isovalent CuII-CuII sites. Density functional theory calculations reveal that the Cu-HMP sites can stabilize the Bpin-CuII-CuI-alkyne intermediate and facilitate C-B bond formation, resulting in a smooth alkyne hydroboration process. This work provides new perspectives to design multimolecular activation catalysts for sophisticated matter transformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...