Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 7(1): 1822, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28500282

ABSTRACT

For muscles to effectively power locomotion, trillions of myosin molecules must rapidly attach and detach from the actin thin filament. This is accomplished by precise regulation of the availability of the myosin binding sites on actin (i.e. activation). Both calcium (Ca++) and myosin binding contribute to activation, but both mechanisms are simultaneously active during contraction, making their relative contributions difficult to determine. Further complicating the process, myosin binding accelerates the attachment rate of neighboring myosin molecules, adding a cooperative element to the activation process. To de-convolve these two effects, we directly determined the effect of Ca++ on the rate of attachment of a single myosin molecule to a single regulated actin thin filament, and separately determined the distance over which myosin binding increases the attachment rate of neighboring molecules. Ca++ alone increases myosin's attachment rate ~50-fold, while myosin binding accelerates attachment of neighboring molecules 400 nm along the actin thin filament.


Subject(s)
Actins/metabolism , Models, Biological , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actins/chemistry , Algorithms , Calcium/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Myosins/chemistry , Myosins/metabolism , Protein Binding
2.
J Appl Physiol (1985) ; 116(9): 1165-74, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24651988

ABSTRACT

Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca(++)-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca(++) levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca(++)-sensitizing mutation in the Ca(++)-binding subunit of Tn (TnC) increased VRTF at submaximal Ca(++) under acidic conditions but had no effect on VRTF at maximal Ca(++) levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca(++). Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.


Subject(s)
Acidosis/genetics , Calcium/metabolism , Deoxyadenine Nucleotides/genetics , Mutation/genetics , Phosphates/physiology , Troponin/genetics , Acidosis/metabolism , Actins/chemistry , Actins/genetics , Amino Acid Sequence , Animals , Chickens , Deoxyadenine Nucleotides/chemistry , Humans , Molecular Sequence Data , Myosins/chemistry , Myosins/genetics , Protein Structure, Secondary , Rabbits , Troponin/chemistry
3.
J Appl Physiol (1985) ; 113(9): 1413-22, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23019317

ABSTRACT

Muscle fatigue from intense contractile activity is thought to result, in large part, from the accumulation of inorganic phosphate (P(i)) and hydrogen ions (H(+)) acting to directly inhibit the function of the contractile proteins; however, the molecular basis of this process remain unclear. We used an in vitro motility assay and determined the effects of elevated H(+) and P(i) on the ability of myosin to bind to and translocate regulated actin filaments (RTF) to gain novel insights into the molecular basis of fatigue. At saturating Ca(++), acidosis depressed regulated filament velocity (V(RTF)) by ≈ 90% (6.2 ± 0.3 vs. 0.5 ± 0.2 µm/s at pH 7.4 and 6.5, respectively). However, the addition of 30 mM P(i) caused V(RTF) to increase fivefold, from 0.5 ± 0.2 to 2.6 ± 0.3 µm/s at pH 6.5. Similarly, at all subsaturating Ca(++) levels, acidosis slowed V(RTF), but the addition of P(i) significantly attenuated this effect. We also manipulated the [ADP] in addition to the [P(i)] to probe which specific step(s) of cross-bridge cycle of myosin is affected by elevated H(+). The findings are consistent with acidosis slowing the isomerization step between two actomyosin ADP-bound states. Because the state before this isomerization is most vulnerable to P(i) rebinding, and the associated detachment from actin, this finding may also explain the P(i)-induced enhancement of V(RTF) at low pH. These results therefore may provide a molecular basis for a significant portion of the loss of shortening velocity and possibly muscular power during fatigue.


Subject(s)
Actin Cytoskeleton/physiology , Muscle Contraction/physiology , Myosins/physiology , Acidosis/physiopathology , Animals , Calcium/metabolism , Chickens , Hydrogen-Ion Concentration , Models, Biological , Muscle Fatigue/physiology , Phosphates/metabolism , Protein Binding , Tropomyosin/physiology , Troponin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL