Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Neurodegener ; 18(1): 97, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111016

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aß) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aß (TCRAß). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAß (TCRAß -Tregs) to reduce Aß burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS: TCRAß -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aß reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aß-tetramer staining. Adoptive transfer of TCRAß-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS: TCRAß-Tregs expressed an Aß-specific TCR. Adoptive transfer of TCRAß-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAß-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS: TCRAß-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins , Disease Models, Animal , Mice, Transgenic , Presenilin-1/genetics , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory
2.
NeuroImmune Pharm Ther ; 2(3): 317-330, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38023614

ABSTRACT

Objectives: To evaluate the linkage between age and deficits in innate and adaptive immunity which heralds both Alzheimer's disease (AD) onset and progression. The pathobiological events which underlie and tie these outcomes remain not fully understood. Methods: To investigate age-dependent immunity in AD, we evaluated innate and adaptive immunity in coordinate studies of regulatory T cell (Treg) function, T cell frequencies, and microglial integrity. These were assessed in blood, peripheral lymphoid tissues, and the hippocampus of transgenic (Tg) amyloid precursor protein/presenilin 1 (APP/PS1) against non-Tg mice. Additionally, immune arrays of hippocampal tissue were performed at 4, 6, 12, and 20 months of age. Results: APP/PS1 mice showed progressive impairment of Treg immunosuppressive function with age. There was partial restoration of Treg function in 20-month-old mice. Ingenuity pathway analyses of hippocampal tissues were enriched in inflammatory, oxidative, and cellular activation pathways that paralleled advancing age and AD-pathobiology. Operative genes in those pathways included, but were not limited to triggering receptor on myeloid cells 1 (TREM1), T helper type 1 (Th1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Interleukin-17 (IL-17), nitric oxide, acute phase, and T cell receptor signaling pathways were also perturbed. Significant inflammation was observed at 6- and 12-months. However, at 20-months, age associated partial restoration of Treg function reduced inflammatory phenotype. Conclusions: Impaired Treg function, inflammation and oxidative stress were associated with AD pathology. Age associated partial restoration of Treg function in old mice reduced the hippocampal inflammatory phenotype. Restoring Treg suppressive function can be a therapeutic modality for AD.

3.
Transl Neurodegener ; 12(1): 26, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217980

ABSTRACT

BACKGROUND: The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS: As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 µg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS: Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS: Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Parkinson Disease , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Parkinson Disease/drug therapy , Proteomics , Biomarkers
4.
J Control Release ; 348: 951-965, 2022 08.
Article in English | MEDLINE | ID: mdl-35738463

ABSTRACT

Transformation of CD4+ T cell effector to regulatory (Teff to Treg) cells have been shown to attenuate disease progression by restoring immunological balance during the onset and progression of neurodegenerative diseases. In our prior studies, we defined a safe and effective pathway to restore this balance by restoring Treg numbers and function through the daily administration of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These studies were conducted as a proof-of-concept testing in Parkinson's disease (PD) preclinical models and early phase I clinical investigations. In both instances, they served to ameliorate disease associated signs and symptoms. However, despite the recorded efficacy, the cytokine's short half-life, low bioavailability, and injection site reactions proved to be limitations for any broader use. To overcome these limitations, mRNA lipid nanoparticles encoding an extended half-life albumin-GM-CSF fusion protein were developed for both mouse (Msa-GM-CSF) and rat (Rsa-GM-CSF). These formulations were tested for immunomodulatory and neuroprotective efficacy using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and human wild-type alpha-synuclein (αSyn) overexpression preclinical models of PD. A single dose of the extended half-life mouse and rat mRNA lipid nanoparticles generated measurable GM-CSF plasma cytokine levels up to four days. Increased Treg frequency and function were associated with a resting microglial phenotype, nigrostriatal neuroprotection, and restoration of brain tissue immune homeostasis. These findings were substantively beyond the recorded efficacy of daily recombinant wild-type GM-CSF with a recorded half-life of six hours. Mechanistic evaluation of neuropathological transcriptional profiles performed in the disease-affected nigral brain region demonstrated an upregulation of neuroprotective CREB and synaptogenesis signaling and neurovascular coupling pathways. These findings highlight the mRNA-encoded albumin GM-CSF fusion protein modification linked to improvements in therapeutic efficacy. The improvements achieved were associated with the medicine's increased bioavailability. Taken together, the data demonstrate that mRNA LNP encoding the extended half-life albumin-GM-CSF fusion protein can serve as a benchmark for PD immune-based therapeutics. This is especially notable for improving adherence of drug regimens in a disease-affected patient population with known tremors and gait abnormalities.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Parkinson Disease , Albumins , Animals , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Half-Life , Humans , Liposomes , Mice , Nanoparticles , Parkinson Disease/drug therapy , Parkinson Disease/genetics , RNA, Messenger , Rats , Recombinant Proteins
5.
ACS Chem Neurosci ; 13(8): 1232-1244, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35312284

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aß) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aß plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aß plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aß1-42 exposure by increasing the cells' phagocytic and Aß degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aß endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.


Subject(s)
Alzheimer Disease , Nanoparticles , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cerium , Europium/metabolism , Homeostasis , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/metabolism
6.
NeuroImmune Pharm Ther ; 1(1): 43-50, 2022 Mar.
Article in English | MEDLINE | ID: mdl-38407500

ABSTRACT

Background: Pharmacological approaches that boost neuroprotective regulatory T cell (Treg) number and function lead to neuroprotective activities in neurodegenerative disorders. Objectives: We investigated whether low-dose interleukin 2 (IL-2) expands Treg populations and protects nigrostriatal dopaminergic neurons in a model of Parkinson's disease (PD). Methods: IL-2 at 2.5 × 104 IU/dose/mouse was administered for 5 days. Lymphocytes were isolated and phenotype determined by flow cytometric analyses. To 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, 0.5 × 106 of enriched IL-2-induced Tregs were adoptively transferred to assess the effects on nigrostriatal neuron survival. Results: IL-2 increased frequencies of CD4+CD25+CD127lowFoxP3+ Tregs that express ICOS and CD39 in blood and spleen. Adoptive transfer of IL-2-induced Tregs to MPTP-treated recipients increased tyrosine hydroxylase (TH)+ nigral dopaminergic neuronal bodies by 51% and TH+ striatal termini by 52% compared to control MPTP-treated animal controls. Conclusions: IL-2 expands numbers of neuroprotective Tregs providing a vehicle for neuroprotection of nigrostriatal dopaminergic neurons in a pre-clinical PD model.

7.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34798897

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Subject(s)
Alzheimer Disease/pathology , CD4-Positive T-Lymphocytes/pathology , Presenilin-1/genetics , Amyloid beta-Protein Precursor/genetics , Amyloidosis/pathology , Animals , Cognition Disorders/pathology , Cognition Disorders/psychology , Inflammation/genetics , Mice , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
8.
EBioMedicine ; 67: 103380, 2021 May.
Article in English | MEDLINE | ID: mdl-34000620

ABSTRACT

BACKGROUND: Neuroinflammation plays a pathogenic role in Parkinson's disease (PD). Immunotherapies that restore brain homeostasis can mitigate neurodegeneration by transforming T cell phenotypes. Sargramostim has gained considerable attention as an immune transformer through laboratory bench to bedside clinical studies. However, its therapeutic use has been offset by dose-dependent adverse events. Therefore, we performed a reduced drug dose regimen to evaluate safety and to uncover novel disease-linked biomarkers during 5 days/week sargramostim treatments for one year. METHODS: Five PD subjects were enrolled in a Phase 1b, unblinded, open-label study to assess safety and tolerability of 3 µg/kg/day sargramostim. Complete blood counts and chemistry profiles, physical examinations, adverse events (AEs), immune profiling, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores, T cell phenotypes/function, DNA methylation, and gene and protein patterns were evaluated. FINDINGS: Sargramostim administered at 3 µg/kg/day significantly reduced numbers and severity of AEs/subject/month compared to 6 µg/kg/day treatment. While MDS-UPDRS Part III score reductions were recorded, peripheral blood immunoregulatory phenotypes and function were elevated. Hypomethylation of upstream FOXP3 DNA elements was also increased. INTERPRETATION: Long-term sargramostim treatment at 3 µg/kg/day is well-tolerated and effective in restoring immune homeostasis. There were decreased numbers and severity of AEs and restored peripheral immune function coordinate with increased numbers and function of Treg. MDS-UPDRS Part III scores did not worsen. Larger patient numbers need be evaluated to assess conclusive drug efficacy (ClinicalTrials.gov NCT03790670). FUNDING: The research was supported by community funds to the University of Nebraska Foundation and federal research support from 5 R01NS034239-25.


Subject(s)
Antiparkinson Agents/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Parkinson Disease/drug therapy , Aged , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/therapeutic use , Biomarkers/analysis , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Male , Middle Aged , Parkinson Disease/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , T-Lymphocytes/immunology
9.
Biomaterials ; 272: 120786, 2021 05.
Article in English | MEDLINE | ID: mdl-33839625

ABSTRACT

Restoring numbers and function of regulatory T cells (Tregs) is a novel therapeutic strategy for neurodegenerative disorders. Whether Treg function is boosted by adoptive cell transfer, pharmaceuticals, or immune modulators, the final result is a robust anti-inflammatory and neuronal sparing response. Herein, a newly developed lipid nanoparticle (LNP) containing mRNA encoding granulocyte-macrophage colony-stimulating factor (Gm-csf mRNA) was developed to peripherally induce Tregs and used for treatment in preclinical Parkinson's disease (PD) models. Administration of Gm-csf mRNA to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and rats overexpressing alpha-synuclein produced dose-dependent increases in plasma GM-CSF levels and peripheral CD4+CD25+FoxP3+ Treg populations. This upregulation paralleled nigrostriatal neuroprotection, upregulated immunosuppression-associated mRNAs that led to the detection of a treatment-induced CD4+ T cell population, and decreased reactive microgliosis. The current findings strengthen prior works utilizing immune modulation by harnessing Gm-csf mRNA to augment adaptive immune function by employing a new delivery platform to treat PD and potentially other neurodegenerative disorders.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Parkinson Disease , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mice , Mice, Inbred C57BL , Neuroprotection , Parkinson Disease/genetics , Parkinson Disease/therapy , RNA, Messenger/genetics , Rats
10.
Neurotherapeutics ; 17(4): 1861-1877, 2020 10.
Article in English | MEDLINE | ID: mdl-32638217

ABSTRACT

Loss of dopaminergic neurons along the nigrostriatal axis, neuroinflammation, and peripheral immune dysfunction are the pathobiological hallmarks of Parkinson's disease (PD). Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully tested for PD treatment. GM-CSF is a known immune modulator that induces regulatory T cells (Tregs) and serves as a neuronal protectant in a broad range of neurodegenerative diseases. Due to its short half-life, limited biodistribution, and potential adverse effects, alternative long-acting treatment schemes are of immediate need. A long-acting mouse GM-CSF (mPDM608) was developed through Calibr, a Division of Scripps Research. Following mPDM608 treatment, complete hematologic and chemistry profiles and T-cell phenotypes and functions were determined. Neuroprotective and anti-inflammatory capacities of mPDM608 were assessed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice that included transcriptomic immune profiles. Treatment with a single dose of mPDM608 resulted in dose-dependent spleen and white blood cell increases with parallel enhancements in Treg numbers and immunosuppressive function. A shift in CD4+ T-cell gene expression towards an anti-inflammatory phenotype corresponded with decreased microgliosis and increased dopaminergic neuronal cell survival. mPDM608 elicited a neuroprotective peripheral immune transformation. The observed phenotypic shift and neuroprotective response was greater than observed with recombinant GM-CSF (rGM-CSF) suggesting human PDM608 as a candidate for PD treatment.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , MPTP Poisoning/chemically induced , MPTP Poisoning/prevention & control , Neuroprotection/drug effects , Neurotoxins/toxicity , Animals , Dose-Response Relationship, Drug , MPTP Poisoning/immunology , Male , Mice , Mice, Inbred C57BL , Neuroprotection/physiology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
11.
Front Cell Neurosci ; 13: 421, 2019.
Article in English | MEDLINE | ID: mdl-31619964

ABSTRACT

A paradigm shift has emerged in Parkinson's disease (PD) highlighting the prominent role of CD4+ Tregs in pathogenesis and treatment. Bench to bedside research, conducted by others and our own laboratories, advanced a neuroprotective role for Tregs making pharmacologic transformation of immediate need. Herein, a vasoactive intestinal peptide receptor-2 (VIPR2) peptide agonist, LBT-3627, was developed as a neuroprotectant for PD-associated dopaminergic neurodegeneration. Employing both 6-hydroxydopamine (6-OHDA) and α-synuclein (α-Syn) overexpression models in rats, the sequential administration of LBT-3627 increased Treg activity without altering cell numbers both in naïve animals and during progressive nigrostriatal degeneration. LBT-3627 administration was linked to reductions of inflammatory microglia, increased survival of dopaminergic neurons, and improved striatal densities. While α-Syn overexpression resulted in reduced Treg activity, LBT-3627 rescued these functional deficits. This occurred in a dose-dependent manner closely mimicking neuroprotection. Taken together, these data provide the basis for the use of VIPR2 agonists as potent therapeutic immune modulating agents to restore Treg activity, attenuate neuroinflammation, and interdict dopaminergic neurodegeneration in PD. The data underscore an important role of immunity in PD pathogenesis.

12.
J Neuroinflammation ; 15(1): 137, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29729668

ABSTRACT

BACKGROUND: The mixed lineage kinase type 3 inhibitor URMC-099 facilitates amyloid-beta (Aß) clearance and degradation in cultured murine microglia. One putative mechanism is an effect of URMC-099 on Aß uptake and degradation. As URMC-099 promotes endolysosomal protein trafficking and reduces Aß microglial pro-inflammatory activities, we assessed whether these responses affect Aß pathobiogenesis. To this end, URMC-099's therapeutic potential, in Aß precursor protein/presenilin-1 (APP/PS1) double-transgenic mice, was investigated in this model of Alzheimer's disease (AD). METHODS: Four-month-old APP/PS1 mice were administered intraperitoneal URMC-099 injections at 10 mg/kg daily for 3 weeks. Brain tissues were examined by biochemical, molecular and immunohistochemical tests. RESULTS: URMC-099 inhibited mitogen-activated protein kinase 3/4-mediated activation and attenuated ß-amyloidosis. Microglial nitric oxide synthase-2 and arginase-1 were co-localized with lysosomal-associated membrane protein 1 (Lamp1) and Aß. Importatly, URMC-099 restored synaptic integrity and hippocampal neurogenesis in APP/PS1 mice. CONCLUSIONS: URMC-099 facilitates Aß clearance in the brain of APP/PS1 mice. The multifaceted immune modulatory and neuroprotective roles of URMC-099 make it an attractive candidate for ameliorating the course of AD. This is buttressed by removal of pathologic Aß species and restoration of the brain's microenvironment during disease.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Pyridines/therapeutic use , Pyrroles/therapeutic use , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/genetics , Animals , Cells, Cultured , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice , Mice, Transgenic , Presenilin-1/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyrroles/pharmacology
13.
J Neuroimmunol ; 319: 80-92, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29573847

ABSTRACT

We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aß, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aß clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.


Subject(s)
Alzheimer Disease , Brain/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Brain/metabolism , Brain/pathology , Mice , Mice, Transgenic
14.
NPJ Parkinsons Dis ; 3: 10, 2017.
Article in English | MEDLINE | ID: mdl-28649610

ABSTRACT

A potential therapeutic role for immune transformation in Parkinson's disease evolves from more than a decade of animal investigations demonstrating regulatory T cell (Treg) nigrostriatal neuroprotection. To bridge these results to human disease, we conducted a randomized, placebo-controlled double-blind phase 1 trial with a well-studied immune modulator, sargramostim (granulocyte-macrophage colony-stimulating factor). We enrolled 17 age-matched non-Parkinsonian subjects as non-treated controls and 20 Parkinson's disease patients. Both Parkinson's disease patients and controls were monitored for 2 months for baseline profiling. Parkinson's disease patients were then randomized into two equal groups to self-administer placebo (saline) or sargramostim subcutaneously at 6 µg/kg/day for 56 days. Adverse events for the sargramostim and placebo groups were 100% (10/10) and 80% (8/10), respectively. These included injection site reactions, increased total white cell counts, and upper extremity bone pain. One urticarial and one vasculitis reaction were found to be drug and benzyl alcohol related, respectively. An additional patient with a history of cerebrovascular disease suffered a stroke on study. Unified Parkinson's disease rating scale, Part III scores in the sargramostim group showed modest improvement after 6 and 8 weeks of treatment when compared with placebo. This paralleled improved magnetoencephalography-recorded cortical motor activities and Treg numbers and function compared with pretreated Parkinson's disease patients and non-Parkinsonian controls. Peripheral Treg transformation was linked to serum tryptophan metabolites, including L-kynurenine, quinolinic acid, and serotonin. These data offer a potential paradigm shift in modulating immune responses for potential therapeutic gain for Parkinson's disease. Confirmation of these early study results requires larger numbers of enrolled patients and further clinical investigation.

15.
J Neuroimmune Pharmacol ; 12(2): 340-352, 2017 06.
Article in English | MEDLINE | ID: mdl-27966067

ABSTRACT

Amyloid-ß (Aß) precursor protein (APP) metabolism engages neuronal endolysosomal pathways for Aß processing and secretion. In Alzheimer's disease (AD), dysregulation of APP leads to excess Aß and neuronal dysfunction; suggesting that neuronal APP/Aß trafficking can be targeted for therapeutic gain. Cathepsin B (CatB) is a lysosomal cysteine protease that can lower Aß levels. However, whether CatB-modulation of Aß improves learning and memory function deficits in AD is not known. To this end, progenitor neurons were infected with recombinant adenovirus expressing CatB and recovered cell lysates subjected to proteomic analyses. The results demonstrated Lamp1 deregulation and linkages between CatB and the neuronal phagosome network. Hippocampal injections of adeno-associated virus expressing CatB reduced Aß levels, increased Lamp1 and improved learning and memory. The findings were associated with the emergence of c-fos + cells. The results support the idea that CatB can speed Aß metabolism through lysosomal pathways and as such reduce AD-associated memory deficits.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor , Amyloidosis/drug therapy , Cathepsin B/therapeutic use , Learning/drug effects , Memory/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/pathology , Animals , Cathepsin B/pharmacology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Learning/physiology , Maze Learning/drug effects , Maze Learning/physiology , Memory/physiology , Memory Disorders/drug therapy , Memory Disorders/metabolism , Memory Disorders/pathology , Mice , Mice, Transgenic , Presenilin-1/metabolism
16.
J Neuroinflammation ; 13(1): 184, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27401058

ABSTRACT

BACKGROUND: Amyloid-ß (Aß)-stimulated microglial inflammatory responses engage mitogen-activated protein kinase (MAPK) pathways in Alzheimer's disease (AD). Mixed-lineage kinases (MLKs) regulate upstream MAPK signaling that include p38 MAPK and c-Jun amino-terminal kinase (JNK). However, whether MLK-MAPK pathways affect Aß-mediated neuroinflammation is unknown. To this end, we investigated if URMC-099, a brain-penetrant small-molecule MLK type 3 inhibitor, can modulate Aß trafficking and processing required for generating AD-associated microglial inflammatory responses. METHODS: Aß1-42 (Aß42) and/or URMC-099-treated murine microglia were investigated for phosphorylated mitogen-activated protein kinase kinase (MKK)3, MKK4 (p-MKK3, p-MKK4), p38 (p-p38), and JNK (p-JNK). These pathways were studied in tandem with the expression of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. Gene expression of the anti-inflammatory cytokines, IL-4 and IL-13, was evaluated by real-time quantitative polymerase chain reaction. Aß uptake and expression of scavenger receptors were measured. Protein trafficking was assessed by measures of endolysosomal markers using confocal microscopy. RESULTS: Aß42-mediated microglial activation pathways were shown by phosphorylation of MKK3, MKK4, p38, and JNK and by expression of IL-1ß, IL-6, and TNF-α. URMC-099 modulated microglial inflammatory responses with induction of IL-4 and IL-13. Phagocytosis of Aß42 was facilitated by URMC-099 with up-regulation of scavenger receptors. Co-localization of Aß and endolysosomal markers associated with enhanced Aß42 degradation was observed. CONCLUSIONS: URMC-099 reduced microglial inflammatory responses and facilitated phagolysosomal trafficking with associated Aß degradation. These data demonstrate a new immunomodulatory role for URMC-099 to inhibit MLK and to induce microglial anti-inflammatory responses. Thus, URMC-099 may be developed further as a novel disease-modifying AD therapy.


Subject(s)
Amyloid beta-Peptides/metabolism , Cytokines/metabolism , Microglia/drug effects , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Amyloid beta-Peptides/pharmacology , Animals , Animals, Newborn , Brain/cytology , Cells, Cultured , Cytokines/genetics , Enzyme-Linked Immunosorbent Assay , Lysosomal-Associated Membrane Protein 1/metabolism , Mice , Microscopy, Confocal , Mitogen-Activated Protein Kinase Kinases/metabolism , Peptide Fragments/pharmacology , Receptors, Scavenger/genetics , Receptors, Scavenger/metabolism , Signal Transduction/drug effects , Statistics, Nonparametric , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
17.
Mol Ther ; 23(11): 1712-1721, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26227349

ABSTRACT

Modulation of the amyloid-ß (Aß) trafficking pathway heralds a new therapeutic frontier for Alzheimer's disease (AD). As CD74 binds to the amyloid-ß precursor protein (APP) and can suppresses Aß processing, we investigated whether recombinant adeno-associated virus (AAV) delivery of CD74 could reduce Aß production and affect disease outcomes. This idea was tested in a mouse AD model. Cotransduction of AAV-tetracycline-controlled transactivator (tTA) and AAV-tet-response element (TRE)-CD74 resulted in CD74 expression, reduced Aß production in mouse neurons containing the human APP with familial AD-linked mutations. Stereotaxic injection of AAV-TRE-GFP or CD74 into the hippocampi of an AD mouse, defined as a TgCRND8 × calmodulin-dependent protein kinase II derived promoter-tTA double-transgenic, reduced Aß loads and pyramidal neuronal Aß accumulation in the hippocampus. Immunofluorescent studies showed that APP colocalization with Lamp1 was increased in CD74-expressing neurons. Moreover, Morris water maze tasks demonstrated that mice treated with AAV-TRE-CD74 showed improved learning and memory compared to AAV-TRE-GFP control animals. These results support the idea that CD74-induced alteration of Aß processing could improve AD-associated memory deficits as shown in mouse models of human disease.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Histocompatibility Antigens Class II/genetics , Neurons/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/physiology , Amyloidosis/metabolism , Animals , Cells, Cultured , Dependovirus , Disease Models, Animal , Female , Genetic Therapy , Genetic Vectors/therapeutic use , Hippocampus/metabolism , Hippocampus/surgery , Humans , Lysosomal Membrane Proteins/metabolism , Male , Maze Learning , Memory , Mice , Mice, Transgenic , Microinjections/methods , Stereotaxic Techniques
18.
Pharm Res ; 31(6): 1605-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24452808

ABSTRACT

PURPOSE: Current cancer chemotherapy is gradually shifting to the application of drug combinations that prevent development of drug resistance. Many anticancer drugs have poor solubility and limited oral bioavailability. Using an innovative approach, we developed dual-drug nanoformulations of a polymeric nanogel conjugate with anticancer 5-FU nucleoside analog, floxuridine (FLOX), and the second anticancer drugs, paclitaxel (PCL), or a geldanamycin analog, 17-AAG, for combination therapy. METHODS: PCL or 17-AAG had been encapsulated in the cholesteryl-polyvinyl alcohol-floxuridine nanogel (CPVA-FLOX) by simple solution mixing and sonication. Dual nanodrugs formed particles with diameter 180 nm and either drug content (5-20%) that were stable and could be administered orally. Their cytotoxicity in human and mouse cancer cells was determined by MTT assay, and cellular target inhibition - by Western blot analysis. Tumor growth inhibition was evaluated using an orthotopic mouse mammary 4T1 cancer model. RESULTS: CPVA-FLOX was more potent than free drug in cancer models including drug-resistant ones; while dual nanodrugs demonstrated a significant synergy (CPVA-FLOX/PCL), or showed no significant synergy (CPVA-FLOX/17-AAG) compared to free drugs (PCL or 17-AAG). Dual nanodrug CPVA-FLOX/17-AAG effect on its cellular target (HSP70) was similar to 17-AAG alone. In animal model, however, both dual nanodrugs effectively inhibited tumor growth compared to CPVA-FLOX after oral administration. CONCLUSION: Oral dual-drug nanoformulations of poorly-soluble drugs proved to be a highly efficient combination anticancer therapy in preclinical studies.


Subject(s)
Antineoplastic Agents/administration & dosage , Polymers/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Drug Compounding , Female , HSP70 Heat-Shock Proteins/biosynthesis , Humans , Mice , Mice, Inbred BALB C , Nanoparticles , Solubility
19.
PLoS One ; 6(6): e21707, 2011.
Article in English | MEDLINE | ID: mdl-21738771

ABSTRACT

Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF) has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling) and loss-of-function (Egr-1) approaches demonstrated the role of mitogen-activated protein kinases (MAPKs), PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.


Subject(s)
Brain/cytology , Capillary Permeability/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Morphine/pharmacology , Platelet-Derived Growth Factor/metabolism , Becaplermin , Blotting, Western , Capillary Permeability/genetics , Cells, Cultured , Chromatin Immunoprecipitation , Humans , Immunohistochemistry , Platelet-Derived Growth Factor/genetics , Polymerase Chain Reaction , Proto-Oncogene Proteins c-sis
20.
PLoS One ; 5(10): e13427, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20976166

ABSTRACT

It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND). The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK), and nuclear factor (NF-κB) were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.


Subject(s)
Astrocytes/drug effects , Cocaine/toxicity , HIV Envelope Protein gp120/physiology , Animals , Astrocytes/metabolism , Blotting, Western , Cells, Cultured , Immunohistochemistry , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL