Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 133632, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971279

ABSTRACT

In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Šand 2.0 Šin Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1752-1775, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914490

ABSTRACT

Thermophilic cyanobacteria are prokaryotic organisms that possess exceptional heat-resistant characteristics. This group serves as an excellent model for investigating the heat tolerance of higher photosynthetic organisms, including higher plants, some protists (such as algae and euglena), and bacteria. Analyzing the mechanisms of high-temperature adaptation in thermophilic cyanobacteria can enhance our understanding of how photosynthetic organisms and microorganisms tolerate high temperatures at the molecular level. Additionally, these thermotolerant cyanobacteria have the potential to contribute to breeding heat-tolerant plants and developing microbial cell factories. This review summarizes current research on thermophilic cyanobacteria, focusing on their ecology, morphology, omics studies, and mechanisms of high-temperature tolerance. It offers insight into the potential biotechnological applications of thermophilic cyanobacteria and highlights future research opportunities. Specifically, attention is given to the photosynthetic physiology and metabolism of cyanobacteria, and the molecular basis of heat-tolerance mechanisms in thermophilic cyanobacteria is explored.


Subject(s)
Adaptation, Physiological , Biotechnology , Cyanobacteria , Hot Temperature , Photosynthesis , Cyanobacteria/physiology , Cyanobacteria/metabolism , Thermotolerance
3.
Microorganisms ; 12(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38792770

ABSTRACT

In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.

4.
Synth Syst Biotechnol ; 8(4): 708-715, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053584

ABSTRACT

By directly converting solar energy and carbon dioxide into biobased products, cyanobacteria are promising chassis for photosynthetic biosynthesis. To make cyanobacterial photosynthetic biosynthesis technology economically feasible on industrial scales, exploring and engineering cyanobacterial chassis and cell factories with fast growth rates and carbon fixation activities facing environmental stresses are of great significance. To simplify and accelerate the screening for fast-growing cyanobacteria strains, a method called Individual Cyanobacteria Vitality Tests and Screening (iCyanVS) was established. We show that the 13C incorporation ratio of carotenoids can be used to measure differences in cell growth and carbon fixation rates in individual cyanobacterial cells of distinct genotypes that differ in growth rates in bulk cultivations, thus greatly accelerating the process screening for fastest-growing cells. The feasibility of this approach is further demonstrated by phenotypically and then genotypically identifying individual cyanobacterial cells with higher salt tolerance from an artificial mutant library via Raman-activated gravity-driven encapsulation and sequencing. Therefore, this method should find broad applications in growth rate or carbon intake rate based screening of cyanobacteria and other photosynthetic cell factories.

5.
Front Plant Sci ; 14: 1293958, 2023.
Article in English | MEDLINE | ID: mdl-38116155

ABSTRACT

Salt stress detrimentally impacts plant growth, imperiling crop yield and food quality. Ameliorating plant resilience and productivity in saline environments is critical for global food security. Here, we report the positive effect of Arthrospira (Spirulina) on plant growth and salt tolerance in Arabidopsis and sweet sorghum. Arthrospira application greatly promotes seed germination and seedling growth in both species under salt stress conditions in a dosage-dependent manner. Application of 6 mg Arthrospira per plate significantly enhances K+/Na+ equilibrium and reactive oxygen species (ROS) scavenging in Arabidopsis, reducing salt-induced toxicity. The primary root length, survival rate, chlorophyll content, photosynthesis, plant height, biomass and yield were all improved in both species. Concurrently, Arthrospira demonstrated the synthesis of compatible solutes, such as trehalose (Tre) and glucosylglycerol (GG), contributing to heightened stress tolerance when co-cultivated with Arabidopsis on plates. Transcriptome analysis revealed dramatic up-/down- regulation of genes involved in phytohormone signal transduction, chlorophyll and photosynthesis metabolism, and phenylpropanoid metabolism in Arabidopsis. Furthermore, the application of Arthrospira exerted a positive influence on the rhizosphere bacteriome structure in sweet sorghum, crucial for nutrient cycling and soil health enhancement. Our findings uncovered the underlying mechanisms of algae-plants interaction in saline soil, proposing strategies to enhance crop productivity and soil quality, thereby addressing the urgent need for sustainable agriculture practices to mitigate salinity's repercussions amidst climate change challenges.

6.
ACS Synth Biol ; 12(10): 3008-3019, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37728873

ABSTRACT

Fructose is an important monosaccharide product widely applied in the food, medicine, and chemical industries. Currently, fructose is mainly manufactured with plant biomass-sourced polysaccharides through multiple steps of digestion, conversion, separation, and purification. The development of cyanobacterial metabolic engineering provides an attractive alternative route for the one-step direct production of fructose utilizing carbon dioxide and solar energy. In this work, we developed a paradigm for engineering cyanobacterial chassis cells into efficient cell factories for the photosynthetic production of fructose. In a representative cyanobacterial strain, Synechococcus elongatus PCC 7942, knockout of fructokinase effectively activated the synthesis and secretion of fructose in hypersaline conditions, independent of any heterologous transporters. The native sucrose synthesis pathway was identified as playing a primary role in fructose synthesis. Through combinatory optimizations on the levels of metabolism, physiology, and cultivation, the fructose yield of the Synechococcus cell factories was stepwise improved to 3.9 g/L. Such a paradigm was also adopted to engineer another Synechococcus strain, the marine species Synechococcus sp. PCC 7002, and facilitated an even higher fructose yield of over 6 g/L. Finally, the fructose synthesized and secreted by the cyanobacterial photosynthetic cell factories was successfully extracted and prepared from the culture broth in the form of products with 86% purity through multistep separation-purification operations. This work demonstrated a paradigm for systematically engineering cyanobacteria for photosynthetic production of desired metabolites, and it also confirmed the feasibility and potential of cyanobacterial photosynthetic biomanufacturing as a simple and efficient route for fructose production.


Subject(s)
Fructose , Synechococcus , Fructose/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Photosynthesis , Metabolic Engineering , Carbohydrate Metabolism , Sucrose/metabolism , Carbon Dioxide/metabolism
7.
Nat Commun ; 14(1): 3425, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296173

ABSTRACT

Glucose is the most abundant monosaccharide, serving as an essential energy source for cells in all domains of life and as an important feedstock for the biorefinery industry. The plant-biomass-sugar route dominates the current glucose supply, while the direct conversion of carbon dioxide into glucose through photosynthesis is not well studied. Here, we show that the potential of Synechococcus elongatus PCC 7942 for photosynthetic glucose production can be unlocked by preventing native glucokinase activity. Knocking out two glucokinase genes causes intracellular accumulation of glucose and promotes the formation of a spontaneous mutation in the genome, which eventually leads to glucose secretion. Without heterologous catalysis or transportation genes, glucokinase deficiency and spontaneous genomic mutation lead to a glucose secretion of 1.5 g/L, which is further increased to 5 g/L through metabolic and cultivation engineering. These findings underline the cyanobacterial metabolism plasticities and demonstrate their applications for supporting the direct photosynthetic production of glucose.


Subject(s)
Carbon Dioxide , Synechococcus , Carbon Dioxide/metabolism , Glucose/metabolism , Glucokinase/genetics , Metabolic Engineering , Photosynthesis/genetics , Synechococcus/genetics , Synechococcus/metabolism
8.
Nat Commun ; 14(1): 1238, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871084

ABSTRACT

Photosynthesis can be impaired by combined high light and high temperature (HLHT) stress. Obtaining HLHT tolerant photoautotrophs is laborious and time-consuming, and in most cases the underlying molecular mechanisms remain unclear. Here, we increase the mutation rates of cyanobacterium Synechococcus elongatus PCC 7942 by three orders of magnitude through combinatory perturbations of the genetic fidelity machinery and cultivation environment. Utilizing the hypermutation system, we isolate Synechococcus mutants with improved HLHT tolerance and identify genome mutations contributing to the adaptation process. A specific mutation located in the upstream non-coding region of the gene encoding a shikimate kinase results in enhanced expression of this gene. Overexpression of the shikimate kinase encoding gene in both Synechococcus and Synechocystis leads to improved HLHT tolerance. Transcriptome analysis indicates that the mutation remodels the photosynthetic chain and metabolism network in Synechococcus. Thus, mutations identified by the hypermutation system are useful for engineering cyanobacteria with improved HLHT tolerance.


Subject(s)
Photosynthesis , Synechocystis , Acclimatization , Temperature
9.
J Biotechnol ; 364: 1-4, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36702257

ABSTRACT

Isomaltulose is a promising functional sweetener with broad application prospects in the food industry. Currently, isomaltulose is mainly produced through bioconversion processes based on the isomerization of sucrose, the economic feasibility of which is influenced by the cost of sucrose feedstocks, the biocatalyst preparation, and product purification. Cyanobacterial photosynthetic production utilizing solar energy and carbon dioxide represents a promising route for the supply of sugar products, which can promote both carbon reduction and green production. Previously, some cyanobacteria strains have been successfully engineered for synthesis of sucrose, the main feedstock for isomaltulose production. In this work, we introduced different sucrose isomerases into Synechococcus elongatus PCC 7942 and successfully achieved the isomaltulose synthesis and accumulation in the recombinant strains. Combinatory expression of an Escherichia coli sourced sucrose permease CscB with the sucrose isomerases led to efficient secretion of isomaltulose and significantly elevated the final titer. During a 6-day cultivation, 777 mg/L of isomaltulose was produced by the engineered Synechococcus cell factory. This work demonstrated a new route for isomaltulose biosynthesis utilizing carbon dioxide as the substrate, and provided novel understandings for the plasticity of cyanobacterial photosynthetic metabolism network.


Subject(s)
Carbon Dioxide , Synechococcus , Carbon Dioxide/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Photosynthesis , Sucrose/metabolism , Isomerases/metabolism , Metabolic Engineering
10.
Nat Commun ; 13(1): 5608, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153325

ABSTRACT

Marine microbial ecosystems can be viewed as a huge ocean-battery charged by solar energy. It provides a model for fabricating bio-solar cell, a bioelectrochemical system that converts light into electricity. Here, we fabricate a bio-solar cell consisting of a four-species microbial community by mimicking the ecological structure of marine microbial ecosystems. We demonstrate such ecological structure consisting of primary producer, primary degrader, and ultimate consumers is essential for achieving high power density and stability. Furthermore, the four-species microbial community is assembled into a spatial-temporally compacted cell using conductive hydrogel as a sediment-like anaerobic matrix, forming a miniaturized bionic ocean-battery. This battery directly converts light into electricity with a maximum power of 380 µW and stably operates for over one month. Reproducing the photoelectric conversion function of marine microbial ecosystems in this bionic battery overcomes the sluggish and network-like electron transfer, showing the biotechnological potential of synthetic microbial ecology.


Subject(s)
Bioelectric Energy Sources , Microbiota , Bionics , Hydrogels , Oceans and Seas
11.
Front Bioeng Biotechnol ; 10: 925311, 2022.
Article in English | MEDLINE | ID: mdl-35845416

ABSTRACT

Cyanobacteria are a promising photosynthetic chassis to produce biofuels, biochemicals, and pharmaceuticals at the expense of CO2 and light energy. Glycogen accumulation represents a universal carbon sink mechanism among cyanobacteria, storing excess carbon and energy from photosynthesis and may compete with product synthesis. Therefore, the glycogen synthesis pathway is often targeted to increase cyanobacterial production of desired carbon-based products. However, these manipulations caused severe physiological and metabolic impairments and often failed to optimize the overall performance of photosynthetic production. Here, in this work, we explored to mobilize the glycogen storage by strengthening glycogen degradation activities. In Synechococcus elongatus PCC 7942, we manipulated the abundances of glycogen phosphorylase (GlgP) with a theophylline dose-responsive riboswitch approach, which holds control over the cyanobacterial glycogen degradation process and successfully regulated the glycogen contents in the recombinant strain. Taking sucrose synthesis as a model, we explored the effects of enhanced glycogen degradation on sucrose production and glycogen storage. It is confirmed that under non-hypersaline conditions, the overexpressed glgP facilitated the effective mobilization of glycogen storage and resulted in increased secretory sucrose production. The findings in this work provided fresh insights into the area of cyanobacteria glycogen metabolism engineering and would inspire the development of novel metabolic engineering approaches for efficient photosynthetic biosynthesis.

12.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 592-604, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35234384

ABSTRACT

Cyanobacteria are important photosynthetic autotrophic microorganisms and are considered as one of the most promising microbial chassises for photosynthetic cell factories. Glycogen is the most important natural carbon sink of cyanobacteria, playing important roles in regulating its intracellular carbon distributions. In order to optimize the performances of cyanobacterial photosynthetic cell factories and drive more photosynthetic carbon flow toward the synthesis of desired metabolites, many strategies and approaches have been developed to manipulate the glycogen metabolism in cyanobacteria. However, the disturbances on glycogen metabolism usually cause complex effects on the physiology and metabolism of cyanobacterial cells. Moreover, the effects on synthesis efficiencies of different photosynthetic cell factories usually differ. In this manuscript, we summarized the recent progress on engineering cyanobacterial glycogen metabolism, analyzed and compared the physiological and metabolism effects caused by engineering glycogen metabolism in different cyanobacteria species, and prospected the future trends of this strategy on optimizing cyanobacterial photosynthetic cell factories.


Subject(s)
Cyanobacteria , Carbon/metabolism , Carbon Dioxide/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Glycogen/metabolism , Metabolic Engineering , Photosynthesis/physiology
13.
ACS Synth Biol ; 11(1): 125-134, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34914362

ABSTRACT

Cyanobacteria are important model organisms for exploring the mechanisms of photosynthesis and are considered as promising microbial platforms for photosynthetic biomanufacturing. The development of efficient cyanobacteria cell factories requires efficient and convenient tools to dynamically regulate and manipulate target proteins, modules, and pathways. Targeted protein degradation is important to achieve rapid responses of cellular metabolic networks to artificial or environmental signals, and there are currently limited approaches to induce protein degradation in cyanobacteria. In this work, we developed an Escherichia coli sourced ssrA-tagging system in an important cyanobacteria strain, Synechococcus elongatus PCC 7942, to achieve inducible degradation of target proteins. A modified version of the E. coli ssrA tag (ssrADAS) proved to be immune to the native ClpXP system in Synechococcus elongatus PCC 7942, while induced expression of the E. coli sourced adaptor SspB and ClpXP resulted in effective degradation of the tagged proteins. Compared to the previously developed down-regulation approaches, the inducible ssrADAS-SspB-ClpXPEc system facilitated the smart and rapid degradation of target proteins in PCC7942 cells at different growth stages. Furthermore, when used to regulate the degradation of LacI, the repressor element of LacO-LacI transcription regulation system, an efficient and stringent inducible gene expression system was obtained based on an OR-GATE type genetic circuit design. The tools developed in this work expanded the cyanobacteria synthetic biology toolbox and will facilitate the success of future dynamic metabolic engineering.


Subject(s)
Escherichia coli Proteins , Synechococcus , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression , Metabolic Engineering/methods , Proteolysis , Synechococcus/genetics , Synechococcus/metabolism
15.
Front Microbiol ; 12: 647164, 2021.
Article in English | MEDLINE | ID: mdl-33897662

ABSTRACT

Photosynthetic biomanufacturing is a promising route for green production of biofuels and biochemicals utilizing carbon dioxide and solar energy. Cyanobacteria are important microbial platforms for constructing photosynthetic cell factories. Toward scaled outdoor cultivations in the future, high light and high temperature tolerances of cyanobacterial chassis strains and cell factories would be determinant properties to be optimized. We proposed a convenient strategy for rapidly improving high light and high temperature tolerances of an important cyanobacterial chassis Synechococcus elongatus PCC 7942 and the derived cell factories. Through introduction and isolation of an AtpA-C252F mutation, PCC 7942 mutants with improved high light and high temperature tolerances could be obtained in only 4 days with an antibiotics-free mode. Adopting this strategy, cellular robustness and sucrose synthesizing capacities of a PCC 7942 cell factory were successfully improved.

16.
Front Microbiol ; 11: 1608, 2020.
Article in English | MEDLINE | ID: mdl-32754143

ABSTRACT

Cyanobacteria are serving as promising microbial platforms for development of photosynthetic cell factories. For enhancing the economic competitiveness of the photosynthetic biomanufacturing technology, comprehensive improvements on industrial properties of the cyanobacteria chassis cells and engineered strains are required. Cellular morphology engineering is an up-and-coming strategy for development of microbial cell factories fitting the requirements of industrial application. In this work, we performed systematic evaluation of potential genes for cyanobacterial cellular morphology engineering. Twelve candidate genes participating in cell morphogenesis of an important model cyanobacteria strain, Synechococcus elongatus PCC7942, were knocked out/down and overexpressed, respectively, and the influences on cell sizes and cell shapes were imaged and calculated. Targeting the selected genes with potentials for cellular morphology engineering, the controllable cell lengthening machinery was also explored based on the application of sRNA approaches. The findings in this work not only provided many new targets for cellular morphology engineering in cyanobacteria, but also helped to further understand the cell division process and cell elongation process of Synechococcus elongatus PCC7942.

17.
J Biotechnol ; 317: 1-4, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32311395

ABSTRACT

Photosynthetic production of ethanol with cyanobacteria utilizing CO2 and solar energy could serve as a promising route for providing green biofuels. Comparing with Synechocystis sp. PCC6803, the most widely utilized cyanobacteria chassis, a marine cyanobacterium Synechococcus sp. PCC7002 (hereafter termed as PCC7002 for short) displayed better tolerances to high temperature and strong illuminations. To engineer ethanol production in PCC7002, we designed a strategy by simultaneous inactivation of glycogen synthesis pathways and introduction of two ethanolgenic cassettes. Two glgA genes responsible for elongation reaction of glycogen was selected as targets for blocking glycogen synthesis, and the removal of glycogen synthesis in PCC7002 caused growth retardation, which could be rescued by introducing two copies of ethanolgenic pathways. In addition, the synergy effects of blocked glycogen synthesis and gene dosage effects for ethanol synthesis resulted in significantly improved performances for ethanol production in the engineered strain, which synthesized 2.2 g/L ethanol in 10 days. In outdoor conditions, the PCC7002 derived cell factory still maintained considerable ethanolgenic capacities, accumulating 0.8 g/L ethanol in 7 days, with an average productivity of over 100 mg/L/day.


Subject(s)
Biosynthetic Pathways/genetics , Ethanol/metabolism , Metabolic Engineering/methods , Synechococcus/genetics , Synechococcus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques , Glycogen/metabolism , Glycogen Synthase/genetics
18.
Curr Opin Biotechnol ; 62: 1-6, 2020 04.
Article in English | MEDLINE | ID: mdl-31505401

ABSTRACT

Cyanobacteria photosynthetic biomanufacturing provides a promising technology route for green development, but an efficient photosynthesis system is required for economical competitive performance. Synthetic biology approaches have been adopted to improve photosynthesis productivity in cyanobacteria chassis cells and cell factories by remodeling cyanobacterial metabolism and physiology for more efficient absorption and utilization of solar energy and carbon dioxide. In addition, systematic assays of a newly identified cyanobacterium which performs efficient photosynthesis has provided extensive data elucidating new directions for tailoring cyanobacteria chassis cells with improved productivity. In this review, we summarize these two aspects of recent progress and suggest trends for future development.


Subject(s)
Cyanobacteria , Photosynthesis , Carbon Dioxide , Cyanobacteria/genetics , Synthetic Biology
19.
Sheng Wu Gong Cheng Xue Bao ; 35(8): 1411-1423, 2019 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-31441612

ABSTRACT

Biorefinery technologies provide promising solutions to achieve sustainable development facing energy and environment crisis, while abundant sugar feedstock is an essential basis for biorefinery industries. Photosynthetic production of sucrose with cyanobacteria is an alternative sugar feedstock supply route with great potentials. Driven by solar energy, cyanobacteria photosynthetic cell factory could directly convert carbon dioxide and water into sucrose, and such a process could simultaneously reduce carbon emissions and supply sugar feedstocks. Here we introduced the history and updated the state-of-the-art on development of cyanobacteria cell factories for photosynthetic production of sucrose, summarized the progress and problems on mechanisms of sucrose synthesis, metabolic engineering strategies and technology expansions, and finally forecasted the future development direction in this area.


Subject(s)
Cyanobacteria , Sucrose , Carbon Dioxide , Metabolic Engineering , Photosynthesis
20.
Biotechnol Adv ; 37(5): 771-786, 2019.
Article in English | MEDLINE | ID: mdl-30978387

ABSTRACT

As important oxygenic photoautotrophs, cyanobacteria are also generally considered as one of the most promising microbial chassis for photosynthetic biomanufacturing. Diverse synthetic biology and metabolic engineering approaches have been developed to enable the efficient harnessing of carbon and energy flow toward the synthesis of desired metabolites in cyanobacterial cell factories. Glycogen metabolism works as the most important natural carbon sink mechanism and reserve carbon source, storing a large portion of carbon and energy from the Calvin-Benson-Bassham (CBB) cycle, and thus is traditionally recognized as a promising engineering target to optimize the efficacy of cyanobacterial cell factories. Multiple strategies and approaches have been designed and adopted to engineer glycogen metabolism in cyanobacteria, leading to the successful regulation of glycogen synthesis and storage contents in cyanobacteria cells. However, disturbed glycogen metabolism results in weakened cellular physiological functionalities, thereby diminishing the robustness of metabolism. In addition, the effects of glycogen removal as a metabolic engineering strategy to enhance photosynthetic biosynthesis are still controversial. This review focuses on the efforts and effects of glycogen metabolism engineering on the physiology and metabolism of cyanobacterial chassis strains and cell factories. The perspectives and prospects provided herein are expected to inspire novel strategies and tools to achieve ideal control over carbon and energy flow for biomanufacturing.


Subject(s)
Cyanobacteria/metabolism , Glycogen/metabolism , Metabolic Engineering/methods , Biotechnology/methods , Carbon/metabolism , Cyanobacteria/genetics , Ethanol/metabolism , Ethylenes/metabolism , Glycogen/genetics , Lactates/metabolism , Mannitol/metabolism , Microorganisms, Genetically-Modified , Photosynthesis , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL