Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Alzheimers Dis ; 101(2): 637-649, 2024.
Article in English | MEDLINE | ID: mdl-39213067

ABSTRACT

Background: The cholinergic hypothesis is one of the main theories that describe the pathogenesis of Alzheimer's disease (AD). Cholinergic neurons degenerate early and are severely damaged in AD. Despite extensive research, the causes of cholinergic neuron damage and the underlying molecular changes remain unclear. Objective: This study aimed to explore the characteristics and transcriptomic changes in cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) with APP mutation. Methods: Peripheral blood mononuclear cells from patients with AD and healthy individuals were reprogrammed into iPSCs. The iPSCs were differentiated into cholinergic neurons. Cholinergic neurons were stained, neurotoxically tested, and electrophysiologically and transcriptomically analyzed. Results: The iPSCs-derived cholinergic neurons from a patient with AD carrying a mutation in APP displayed enhanced susceptibility to Aß1-42-induced neurotoxicity, characterized by severe neurotoxic effects, such as cell body coagulation and neurite fragmentation. Cholinergic neurons exhibited electrophysiological impairments and neuronal death after 21 days of culture in the AD group. Transcriptome analysis disclosed 883 differentially expressed genes (DEGs, 420 upregulated and 463 downregulated) participating in several signaling pathways implicated in AD pathogenesis. To assess the reliability of RNA sequencing, the expression of 16 target DEGs was validated using qPCR. Finally, the expression of the 8 core genes in different cell types of brain was analyzed by the AlzData database. Conclusions: In this study, iPSCs-derived cholinergic neurons from AD patients with APP mutations exhibit characteristics reminiscent of neurodegenerative disease. Transcriptome analysis revealed the corresponding DEGs and pathways, providing potential biomarkers and therapeutic targets for advancing AD research.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Cholinergic Neurons , Induced Pluripotent Stem Cells , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mutation/genetics , Gene Expression Profiling , Transcriptome , Amyloid beta-Peptides/metabolism , Cell Differentiation/genetics , Male , Peptide Fragments/genetics , Peptide Fragments/metabolism , Female
2.
BMJ Open ; 14(7): e082404, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002963

ABSTRACT

INTRODUCTION: The efficacy of multitarget neuroprotective drug DL-3-n-butylphthalide (NBP) in improving cognitive function has been confirmed in patients with vascular cognitive impairment without dementia. However, its efficacy in patients with symptomatic predementia phase of Alzheimer's disease remains uncertain. This study aims to evaluate the efficacy and safety of NBP in improving cognitive function in patients with mild cognitive impairment (MCI) through a clinical randomised controlled trail. METHODS AND ANALYSIS: This study is a 12-month, randomised, double-blind, placebo-controlled, multicentric trial, involving 270 patients with MCI. Subjects are randomly assigned to receive either NBP soft capsule (200 mg, three times per day) or placebo with an allocation ratio of 1:1. The efficacy and safety of NBP are assessed by comparing the results of neuropsychological, neuroimaging and laboratory tests between the two groups. The primary endpoint is the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale after 12 months. All patients will be monitored for adverse events. ETHICS AND DISSEMINATION: This study involving human participants has been reviewed and approved by Ethics Committee of Xuan Wu Hospital (No.2017058). The participants provide their written informed consent to participate in this study. Results will be published in peer-reviewed medical journals and disseminated to healthcare professionals at local and international conferences. PROTOCOL VERSION: V 3.0, 3 September 2022. TRIAL REGISTRATION NUMBER: ChiCTR1800018362.


Subject(s)
Benzofurans , Cognitive Dysfunction , Neuroprotective Agents , Aged , Female , Humans , Male , Middle Aged , Benzofurans/therapeutic use , Benzofurans/adverse effects , Cognition/drug effects , Cognitive Dysfunction/drug therapy , Double-Blind Method , Multicenter Studies as Topic , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/adverse effects , Neuropsychological Tests , Randomized Controlled Trials as Topic , Treatment Outcome
3.
Stem Cell Res ; 79: 103501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029293

ABSTRACT

Apolipoprotein E (APOE)is the gene with greatest genetic risk for Alzheimer's disease (AD). We successfully established a human induced pluripotent stem cell(iPSC) line from a woman mutated by APOE gene. The cell line was isolated from this woman's peripheral blood mononuclear cells using a non-integrated Sendai virus, which retained the original genotype, showed a normal karyotype, highly expressed pluripotent markers and could differentiate into three germ layers.


Subject(s)
Apolipoproteins E , Induced Pluripotent Stem Cells , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Female , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cell Line , Cell Differentiation , Karyotype , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology
4.
Stem Cell Res ; 77: 103398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552354

ABSTRACT

Genetic polymorphism of apolipoprotein E (APOE) confers differential susceptibility to Alzheimer's disease (AD), and APOE ɛ4 variants is the most powerful risk factor for this disease. Here, we report the generation of a human induced pluripotent stem cell (iPSC) line carrying the APOE ɛ4/ɛ4 genotype from peripheral blood mononuclear cells (PBMCs) isolated from a male with a family history of AD utilizing non-integrative Sendai virus vector. The iPSC maintains their original genotype, highly express endogenous pluripotency markers, displays a normal karyotype, and retains the ability to differentiate into cells representative of the three germ layers.


Subject(s)
Apolipoproteins E , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Male , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mutation , Cell Line , Cell Differentiation , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology
SELECTION OF CITATIONS
SEARCH DETAIL