Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22622-22631, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38625091

ABSTRACT

The strong light-matter interaction and naturally passivated surfaces of van der Waals materials make heterojunctions of such materials ideal candidates for high-performance photodetectors. In this study, we fabricated SnS2/MoS2 van der Waals heterojunctions and investigated their photoelectric properties. Using an applied gate voltage, we can effectively alter the band arrangement and achieve a transition in type II and type I junctions. It is found that the SnS2/MoS2 van der Waals heterostructures are type II heterojunctions when the gate voltage is above -25 V. Below this gate voltage, the heterojunctions become type I. Photoelectric measurements under various wavelengths of incident light reveal enhanced sensitivity in the ultraviolet region and a broadband sensing range from 400 to 800 nm. Moreover, due to the transition from type II to type I band alignment, the measured photocurrent saturates at a specific gate voltage, and this value depends crucially on the bias voltage and light wavelength, providing a potential avenue for designing compact spectrometers.

2.
Nat Plants ; 10(1): 131-144, 2024 01.
Article in English | MEDLINE | ID: mdl-38172573

ABSTRACT

Cuticular waxes play important roles in plant development and the interaction between plants and their environment. Researches on wax biosynthetic pathways have been reported in several plant species. Also, wax formation is closely related to environmental condition. However, the regulatory mechanism between wax and environmental factors, especially essential mineral elements, is less studied. Here we found that nitrogen (N) played a negative role in the regulation of wax synthesis in apple. We therefore analysed wax content, composition and crystals in BTB-TAZ domain protein 2 (MdBT2) overexpressing and antisense transgenic apple seedlings and found that MdBT2 could downregulate wax biosynthesis. Furthermore, R2R3-MYB transcription factor 16-like protein (MdMYB106) interacted with MdBT2, and MdBT2 mediated its ubiquitination and degradation through the 26S proteasome pathway. Finally, HXXXD-type acyl-transferase ECERIFERUM 2-like1 (MdCER2L1) was confirmed as a downstream target gene of MdMYB106. Our findings reveal an N-mediated apple wax biosynthesis pathway and lay a foundation for further study of the environmental factors associated with wax regulatory networks in apple.


Subject(s)
Arabidopsis , Malus , Arabidopsis/genetics , Malus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Acyltransferases/metabolism , Waxes/metabolism , Gene Expression Regulation, Plant
3.
Plant Physiol Biochem ; 206: 108288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38160533

ABSTRACT

Apple epidermal wax protects plants from environmental stresses, determines fruit gloss and improves postharvest storage quality. However, the molecular mechanisms underlying the biosynthesis and regulation of apple epidermal waxes are not fully understood. In this study, we isolated a MdDEWAX gene from apple, which localized in the nucleus, expressed mainly in apple fruit, and induced by drought. We transformed the MdDEWAX gene into Arabidopsis, and found that heterologous expression of MdDEWAX reduced the accumulation of cuticular waxes in leaves and stems, increased epidermal permeability, the rate of water loss, and the rate of chlorophyll extraction of leaves and stems, altered the sensitivity to ABA, and reduced drought tolerance. Meanwhile, overexpression or silencing of the gene in the epidermis of apple fruits decreased or increased wax content, respectively. This study provides candidate genes for breeding apple cultivars and rootstocks with better drought tolerance.


Subject(s)
Arabidopsis , Malus , Drought Resistance , Transcription Factors/genetics , Plant Breeding , Arabidopsis/genetics , Droughts , Malus/genetics , Malus/metabolism , Waxes/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Biomed Pharmacother ; 170: 115679, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113632

ABSTRACT

Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Depression/metabolism , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Acetates/pharmacology , Stress, Psychological/metabolism
5.
J Cell Mol Med ; 28(3): e18058, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38098246

ABSTRACT

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Subject(s)
Astragalus Plant , Signal Transduction , Mice , Animals , Polysaccharides/pharmacology , Intestines , Stem Cells
6.
RSC Adv ; 13(46): 32778-32785, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37942447

ABSTRACT

Danggui Buxue Decoction (DBD), consisting of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (Huangqi, HQ) and Angelica sinensis (Oliv.) Diels (Danggui, DG), is a traditional Chinese medicine (TCM) formula with the function of tonifying Qi and promoting blood. In this study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to comprehensively identify the chemical constituents in DBD and those entering into the rat serum after gastric perfusion. A combination of the UNIFI platform and Global Natural Product Social molecular networking (GNPS) was used to analyze the chemical composition of DBD. As a result, 207 compounds were unambiguously or tentatively identified including 60 flavonoids, 38 saponins, 35 organic acids, 26 phthalides, 12 phenylpropanoids, 11 amino acids and 25 others. Furthermore, a total of 80 compounds, including 29 prototype components and 51 exogenous metabolites, were detected in the serum of rats. Phase I reactions (oxidation, reduction, and hydration), phase II reactions (methylation, sulfation, and glucuronidation), and their combinations were the main metabolic pathways of DBD. The results provided fundamental information for further studying the pharmacological mechanisms of DBD, as well as its quality control research.

7.
Front Pharmacol ; 14: 1178724, 2023.
Article in English | MEDLINE | ID: mdl-37601071

ABSTRACT

Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.

8.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37427974

ABSTRACT

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

9.
Biomed Pharmacother ; 163: 114862, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167729

ABSTRACT

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.


Subject(s)
Fatigue Syndrome, Chronic , Gastrointestinal Microbiome , Male , Animals , Mice , Fatigue Syndrome, Chronic/drug therapy , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
10.
Biomed Chromatogr ; 37(6): e5621, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895149

ABSTRACT

Cistanche tubulosa (CT), a well-known traditional Chinese medicine, has always been processed with rice wine for the treatment of kidney-yang deficiency syndrome (KYDS) since time immemorial. To explore the effect of processing on the efficacy and metabolites of CT in vivo, a comprehensive method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was established for the analysis of the altered endogenous metabolites in response to the intervention of the raw and processed CT in KYDS model and the metabolites of the absorbed compounds in rats after gastric perfusion. It was shown that CT could improve KYDS, and the effect of the processed product was more significant. A total of 47 differential metabolites were identified in urine. Pathway analysis proved that purine metabolism; alanine, aspartate, and glutamate metabolism; and citrate cycle were the main pathways. Furthermore, 53 prototypes and 48 metabolites have been detected in rats. This was the first systematic research focus on the metabolites of raw and processed CT in vivo, which could provide a scientific basis for explaining the increasing efficiency of the processed CT. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other TCM prescriptions.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Cistanche/metabolism , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Chromatography, Liquid
11.
Metabolites ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36837823

ABSTRACT

Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.

12.
Ecotoxicol Environ Saf ; 248: 114341, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36442401

ABSTRACT

Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Intestines
13.
Metabolites ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36144234

ABSTRACT

Euphorbiasteroid, a lathyrane-type diterpene from Euphorbiae semen (the seeds of Euphorbia lathyris L.), has been shown to have a variety of pharmacological effects such as anti-tumor and anti-obesity. This study aims to investigate the metabolic profiles of euphorbiasteroid in rats and rat liver microsomes (RLMs) and Cunninghamella elegans bio-110930 by integrating ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS), UNIFI software, and NMR techniques. A total of 31 metabolites were identified in rats. Twelve metabolites (M1-M5, M8, M12-M13, M16, M24-M25, and M29) were matched to the metabolites obtained by RLMs incubation and the microbial transformation of C. elegans bio-110930 and their structures were exactly determined through analysis of NMR spectroscopic data. In addition, the metabolic pathways of euphorbiasteroid were then clarified, mainly including hydroxylation, hydrolysis, oxygenation, sulfonation, and glycosylation. Finally, three metabolites, M3 (20-hydroxyl euphorbiasteroid), M24 (epoxylathyrol) and M25 (15-deacetyl euphorbiasteroid), showed significant cytotoxicity against four human cell lines with IC50 values from 3.60 µM to 40.74 µM. This is the first systematic investigation into the in vivo metabolic pathways of euphorbiasteroid and the cytotoxicity of its metabolites, which will be beneficial for better predicting the metabolism profile of euphorbiasteroid in humans and understanding its possible toxic material basis.

14.
Nat Commun ; 12(1): 2018, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33795697

ABSTRACT

There is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.

15.
ACS Appl Mater Interfaces ; 12(13): 15830-15836, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32134622

ABSTRACT

Field-effect transistors derived from traditional 3D semiconductors are rapidly approaching their fundamental limits. Layered semiconducting materials have emerged as promising candidates to replace restrictive 3D semiconductor materials. However, contacts between metals and layered materials deviate from Schottky-Mott behavior when determined by transport methods, while X-ray photoelectron spectroscopy measurements suggest that the contacts should be at the Schottky limit. Here, we present a systematic investigation on the influence of metal selection when electrically contacting SnS2, a layered metal dichalcogenide semiconductor with the potential to replace silicon. It is found that the electrically measured barrier height depends also weakly on the work function of the metal contacts with slopes of 0.09 and -0.34 for n-type and p-type Schottky contacts, respectively. Based on the Kirchhoff voltage law and considering a current path induced by metallic defects, we found that the Schottky barrier still follows the Schottky-Mott limits and the electrically measured barrier height mainly originates from the van der Waals gap between the metal and SnS2, and the slope depends on the magnitude of the van der Waals capacitance.

16.
RSC Adv ; 10(3): 1580-1587, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-35494696

ABSTRACT

Monolayer MoSe2 is a transition metal dichalcogenide with a narrow bandgap, high optical absorbance and large spin-splitting energy, giving it great promise for applications in the field of optoelectronics. Producing monolayer MoSe2 films in a reliable and scalable manner is still a challenging task as conventional chemical vapor deposition (CVD) or exfoliation based techniques are limited due to the small domains/nanosheet sizes obtained. Here, based on NaCl assisted CVD, we demonstrate the simple and stable synthesis of sub-millimeter size single-crystal MoSe2 monolayers with mobilities ranging from 38 to 8 cm2 V-1 s-1. The average mobility is 12 cm2 V-1 s-1. We further determine that the optical responsivity of monolayer MoSe2 is 42 mA W-1, with an external quantum efficiency of 8.22%.

17.
RSC Adv ; 10(35): 20921-20927, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517749

ABSTRACT

GeSn is a group IV alloy material with a narrow bandgap, making it favorable for applications in sensing and imaging. However, strong surface carrier recombination is a limiting factor. To overcome this, we investigate the broadband photoelectrical properties of graphene integrated with doped GeSn, from the visible to the near infrared. It is found that photo-generated carriers can be separated and transported with a higher efficiency by the introduction of the graphene layer. Considering two contrasting arrangements of graphene on p-type and n-type GeSn films, photocurrents were suppressed in graphene/p-type GeSn heterostructures but enhanced in graphene/n-type GeSn heterostructures when compared with control samples without graphene. Moreover, the enhancement (suppression) factor increases with excitation wavelength but decreases with laser power. An enhancement factor of 4 is achieved for an excitation wavelength of 1064 nm. Compared with previous studies, it is found that our graphene/n-type GeSn based photodetectors provide a much wider photodetection range, from 532 nm to 1832 nm, and maintain comparable responsivity. Our experimental findings highlight the importance of the induced bending profile on the charge separation and provides a way to design high performance broadband photodetectors.

18.
ACS Omega ; 4(2): 3812-3819, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459592

ABSTRACT

Graphene is a single layer of carbon atoms with a large surface-to-volume ratio, providing a large capacity gas molecule adsorption and a strong surface sensitivity. Chemical vapor deposition-grown graphene-based NO2 gas sensors typically have detection limits from 100 parts per billion (ppb) to a few parts per million (ppm), with response times over 1000 s. Numerous methods have been proposed to enhance the NO2 sensing ability of graphenes. Among them, surface decoration with metal particles and metal-oxide particles has demonstrated the potential to enhance the gas-sensing properties. Here, we show that the NO2 sensing of graphene can be also enhanced via decoration with monodisperse polymer beads. In dark conditions, the detection limit is improved from 1000 to 45 ppb after the application of polystyrene (PS) beads. With laser illumination, a detection limit of 0.5 ppb is determined. The enhanced gas sensing is due to surface plasmon polaritons excited by interference and charge transfer between the PS beads. This method opens an interesting route for the application of graphene in gas sensing.

19.
ACS Sens ; 4(9): 2546-2552, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31456397

ABSTRACT

SnSe2 is an anisotropic binary-layered material with rich physics, which could see it used for a variety of potential applications. Here, we investigate the gas-sensing properties of SnSe2 using first-principles calculations and verify predictions using a gas sensor made of few-layer SnSe2 grown by chemical vapor deposition. Theoretical simulations indicate that electrons transfer from SnSe2 to NO2, whereas the direction of charge transfer is the opposite for NH3. Notably, a flat molecular band appears around the Fermi energy after NO2 adsorption and the induced molecular band is close to the conduction band minimum. Moreover, compared with NH3, NO2 molecules adsorbed on SnSe2 have a lower adsorption energy and a higher charge transfer value. The dynamic-sensing responses of SnSe2 sensors confirm the theoretical predictions. The good match between the theoretical prediction and experimental demonstration suggests that the underlying sensing mechanism is related to the charge transfer and induced flat band. Our results provide a guideline for designing high-performance gas sensors based on SnSe2.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Gases/analysis , Limit of Detection , Tin Compounds/chemistry , Electron Transport , Models, Molecular , Molecular Conformation
20.
Sci Rep ; 6: 19347, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26777609

ABSTRACT

Bi2WO6 as a high visible-light-driven catalyst has been aroused broad interest. However, it can only be excitated by the light with λ < 450 nm and the solar energy utilization need to be improved. Here, the wide-range-visible photoresponse Bi2WO6-x nanoplates were fabricated by introducing surface oxygen vacancies through the controllable hydrogen reduction method. The visible photoresponse wavelength range is extended from 450 nm to more than 600 nm. In addition, the photocatalytic activity of Bi2WO6-x is also increased and is 2.1 times as high as that of pristine Bi2WO6. The extending of the photoresponse range and the enhancement of the photoactivity both can be attributed to the surface-oxygen-vacancy states. This is because surface-oxygen-vacancy states generated above and partly overlapping of with the valence band (VB) will result in the rising of valence band maximum (VBM), thus broadening the VB width. This approach is proposed to develop many types of wide-range-visible optical materials and to be applicable to many narrow and wide bandgap materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...