Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Food Chem ; 458: 140195, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38954951

ABSTRACT

Pleurotus eryngii, an edible mushroom recognized for its potent polysaccharides, demonstrates significant regulatory effects on metabolic processes. ß-glucan (WPEP) derived from P. eryngii has been noted for its therapeutic potential, exhibiting notable benefits in alleviating colonic inflammation and restructuring gut microbiota in mice treated with dextran sodium sulfate (DSS). This study focuses on utilizing DSS-induced colitis mice to explore the efficacy and underlying mechanisms of WPEP in ameliorating colitis, employing a metabolomics approach analyzing urine and serum. The findings reveal that WPEP administration effectively regulates metabolic imbalances in DSS mice, impacting purine metabolism, pentose and glucuronic acid interconversion, amino acid metabolism, primary bile acid biosynthesis, citric acid cycle, and lipid metabolism. Furthermore, WPEP demonstrates a capacity to modulate colitis by regulating diverse metabolic pathways, consequently influencing intestinal barrier integrity, motility, inflammation, oxidative stress, and immunity. These insights suggest that WPEP is a promising food component for managing inflammatory bowel diseases.

2.
Crit Rev Food Sci Nutr ; : 1-23, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821105

ABSTRACT

Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.

3.
Food Funct ; 15(11): 6082-6094, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757389

ABSTRACT

Flammulina velutipes protein hydrolysates are known for their abundant amino acids and excellent developmental values. This study aimed to identify and screen neuroprotective peptides from F. velutipes protein hydrolysates in vitro and validate the protective effects of YVYAETY on memory impairment in scopolamine-induced mice. The F. velutipes protein was hydrolyzed by simulated gastrointestinal digestion, followed by purification through ultrafiltration and gel chromatography. The fraction exhibiting the strongest neuroprotective activity was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main identified peptides (SDLKPADF, WNDHYY, YVYAETY, and WFHPLF) effectively mitigated excessive ROS production by increasing SOD and GSH-px activities while inhibiting cell apoptosis and mitochondrial membrane potential (MMP) collapse against oxidative stress in Aß25-35-induced HT22 cells. By molecular docking, the interaction between peptides and the active site of the Keap1-Kelch domain reveals their capacity to regulate the Keap1/Nrf2/HO-1 pathway. In vitro, the peptide YVYAETY had the best effect and can be further validated in vivo. The behavioral tests showed that YVYAETY improved scopolamine-induced cognitive impairment in mice. YVYAETY also alleviated neuron damage including neuron vacuolation and pyknotic nuclei in the hippocampus. Furthermore, it significantly inhibited oxidative stress and suppressed the activation of the Nrf2 pathway. Therefore, this study revealed that YVYAETY had the potential to serve as a novel neuroprotective agent.


Subject(s)
Cognitive Dysfunction , Flammulina , Neuroprotective Agents , Protein Hydrolysates , Scopolamine , Animals , Mice , Scopolamine/adverse effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Flammulina/chemistry , Male , Oxidative Stress/drug effects , Peptides/pharmacology , Peptides/chemistry , Molecular Docking Simulation , Hippocampus/drug effects , Hippocampus/metabolism , Apoptosis/drug effects
4.
Food Res Int ; 184: 114228, 2024 May.
Article in English | MEDLINE | ID: mdl-38609215

ABSTRACT

There is a growing interest in employing whole food-based strategies to prevent chronic diseases, owing to the potential synergistic interactions among various bioactive components found within whole foods. The current research aimed to determine inhibitory effects of the whole edible mushroom Pleurotus eryngii (WPE) on high-fat diet (HFD)-induced obesity in mice. Our results showed that dietary intake of WPE significantly inhibited the abnormal gain of body weight and adipose tissue weight, improved glucose tolerance, and ameliorated the serum biochemical parameters in HFD-fed mice. The histological analysis illustrated that the severity of non-alcoholic fatty liver induced by HFD was significantly reduced by WPE. Oral intake of WPE profoundly modulated the mRNA levels of hepatic genes involved in lipid metabolism and also increased the level of short-chain fatty acids in the mouse cecum. Moreover, WPE alleviated the HFD-induced gut microbiota dysbiosis, increasing the abundance of beneficial bacteria (Akkermansia, Lactobacillus, Bifidobacterium, and Sutteralla), and decreasing the harmful ones (rc4-4, Dorea, Coprococcus, Oscillospira, and Ruminococcus). These findings presented new evidence supporting that WPE could be used as a whole food-based strategy to protect against obesity and obesity-driven health problems.


Subject(s)
Gastrointestinal Microbiome , Pleurotus , Animals , Mice , Dysbiosis , Lipid Metabolism , Obesity/prevention & control , Eating
5.
Curr Res Food Sci ; 8: 100688, 2024.
Article in English | MEDLINE | ID: mdl-38352628

ABSTRACT

The 3D printing (3DP) technology shows great potential in the food industry, but the development of edible ink is currently insufficient. Pleurotus ostreatus (P. ostreatus) emerges as a novel promising candidate. In this study, a mixed ink was obtained by incorporating butter into P. ostreatus. The effects of different ratios of P. ostreatus and butter, as well as the influence of ink steaming were investigated on 3D printed products. The results indicated that all inks of the P. ostreatus system exhibited positive shear-thinning behavior, and the system maintained stable intermolecular hydrogen bonding when P. ostreatus powder concentration was 40 % (w/v). Furthermore, the L* value of the system was elevated for butter adding. The system with steaming exhibited superior stabilized molecular structure compared to the native system, particularly with a steaming duration of 5 min, showcasing its outstanding supporting capacity. This study suggests that P. ostreatus is a promising candidate in 3DP for the development of an edible ink that promotes innovation and nutritional food.

6.
Food Sci Nutr ; 12(2): 1318-1329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370047

ABSTRACT

Pleurotus eryngii polysaccharides (PEPs) have been proven to display multiple activities through digestive system action, from which the digestion products should first interact with intestinal mucus (MUC), followed by the function of intestinal cells. Hence, possible interacting characterizations between MUC and in vitro simulated digestion products of P. eryngii polysaccharides (DPEPs) and PEP were carried out in the present study. Results showed that both PEP and DPEP could significantly interact with MUC. Moreover, digestion can modify the interaction between polysaccharides and MUC; the degree of interaction also changes with time incrementing. Viscosity could be decreased after digesting. According to the zeta potential and stability analysis result, the digestive behavior could be regular and stable between polysaccharides and MUC interactions. Following fluorescence and infrared spectra, the structure of polysaccharides and mucin might be changed by digestion between polysaccharides and MUC. The study indicates that the interaction formed between DPEP and MUC might indirectly impact the exercise and immune activities of polysaccharides and influence the transportation of other nutrients. Overall, our results, the absorption and transport pathways of PEP, can be initially revealed and may provide a novel research viewpoint on the active mechanism of PEP in the intestinal tract.

7.
Food Funct ; 15(3): 1476-1488, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226839

ABSTRACT

Recently, Pleurotus eryngii (P. eryngii) polysaccharide (PEP) has received a lot of attention from many researchers as the primary active substance. The PEP influences the gut microbiota in several ways, including the interaction of fermentation products with the intestinal mucus layer (IML) and intestinal epithelial cells. Herein, we characterized interactions between the IML and PEP after degradation by the gut microbes. Our results showed that fermented P. eryngii polysaccharide (FPEP) can interact with intestinal mucus (IM), and this interaction can reduce the degree of molecular aggregation of polysaccharides. At the same time, the fermentation time of FPEP also affects the interaction between the two. SEM showed that the FPEP solution tended to aggregate into larger particles, while with the addition of IM, the FPEP molecules were dispersed. Particle size measurements unveil substantial differences in the fermented polysaccharides' particle size between the group with supplementary IM (0 hours of fermentation: 485.1 ± 11.3 nm) and the group without IM (0 hours of fermentation: 989.33 ± 21.3 nm). Remarkably, within the group with added IM, the particle size reached its maximum at 24 hours of fermentation (585.87 ± 42.83 nm). Additionally, turbidity assessments demonstrate that, during the 12-hour interaction period, the 24-hour fermented polysaccharides consistently exhibit the highest OD values, ranging between 0.57 and 0.61. This work investigates the interaction between FPEP and IM, predicting the adhesion of polysaccharides to IM. Meanwhile, this provides a theoretical basis for further studies on the absorption and transport pathways of PEP and provides a novel research viewpoint on intestinal digestion and absorption.


Subject(s)
Pleurotus , Polysaccharides , Fermentation , Polysaccharides/metabolism , Pleurotus/metabolism
8.
Int J Biol Macromol ; 253(Pt 6): 127308, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37832619

ABSTRACT

Our recent study demonstrated that the dynamic changes of gut microbiota mediated by Flammulina velutipes polysaccharide (FVP) could effectively regulate the lipid metabolism in high fat diet-fed (HFD-fed) obese mice model. In this paper, further research was carried out by examining the bile acid (BAs) profiles, as well as the BAs metabolic pathways changes in obese mice. Furthermore, the regulatory effect of BAs on lipid metabolism was verified by 3 T3-L1 preadipocyte differentiation model. The FVP administration resulted in lower BAs content in plasma of obese mice. From the qRT-PCR analysis, FVP could relieve cholestasis in obese mice through altering the BAs metabolic pathways, changing the related genes expressions in mice liver and ileum. The cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA) were selected in cell experiment which all reduced the intracellular triglyceride content and increased the expression of AMPKα1 in 3 T3-L1 adipocytes. Furthermore, CA and CDCA were found increased the expression of PPARα. In combination with our previous research, we further confirmed in this paper that the changes of BAs metabolism caused by FVP showed a positive effect on lipid metabolism, both in obese mice and 3 T3-L1 adipocytes.


Subject(s)
Flammulina , Lipid Metabolism Disorders , Mice , Animals , Diet, High-Fat/adverse effects , Lipid Metabolism , Liver , Mice, Obese , Bile Acids and Salts/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Lipid Metabolism Disorders/metabolism , Mice, Inbred C57BL
9.
Food Chem ; 418: 135849, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36963137

ABSTRACT

Agaricus bisporus, an edible mushroom, is grown and consumed worldwide for its delicious taste and multiple health benefits. A. bisporus polysaccharides (ABP) are the main bioactive ingredient of the mushroom that confers health benefits. In this study, we prepared and characterized ABP, and the digestion, fermentation prosperities, and the effect of ABP on gut microbiota were detected via in vitro simulated digestion and gut microbiota fermentation. The results showed that during the simulated digestion process, the molecular weight of ABP was unchanged, and no free monosaccharide was produced, indicating that ABP could not be digested completely. However, after the fermentation, gut microbiota degraded and utilized ABP, which produced short-chain fatty acids and caused a decrease in pH value. Meanwhile, ABP modulated the gut microbiota composition by increasing the abundance of beneficial bacteria. The results suggested that ABP is a promising food component with prebiotic potential.


Subject(s)
Gastrointestinal Microbiome , Fermentation , Digestion , Fatty Acids, Volatile/metabolism , Polysaccharides/pharmacology
10.
J Sci Food Agric ; 103(9): 4522-4534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36851873

ABSTRACT

BACKGROUND: Lead (Pb) is a highly toxic and persistent substance that easily accumulates in living organisms, eliciting cellular toxicity and oxidative stress. Some selenium-containing proteins and peptides prepared from plant extracts are beneficial for protecting the body's health and resisting external disturbances. In the present study, selenium-containing peptide species were prepared from selenium-enriched Pleurotus eryngii protein hydrolysates and to evaluate the benefits of selenium-containing peptides on Pb-induced oxidative stress in NCTC1469 hepatocytes. RESULTS: Trypsin was selected as primary enzyme to hydrolyze the selenium-enriched protein (SPH). The optimal hydrolysis conditions were: hydrolysis time, 1.5 h; initial pH 8.0. The SPH was digested by trypsin and then purified by ultrafiltration, gel filtration chromatography and reversed-phase HPLC to obtain the selenium-containing peptides SPH-I-2. Furthermore, SPH-I-2 was analyzed and a number of total 12 selenium-containing peptides were identified by liquid chromatography-tandem mass spectroscopy. The NCTC1469 cell culture study showed that selenium-containing peptides were capable of reducing reactive oxygen species levels and regulating the Keap1/Nrf2 pathway by upregulating Nrf2, HO-1, GCLC, GCLM and NQO1 genes and downregulating Keap1 genes. Moreover, selenium-containing peptides were also able to suppress Pb-induced elevated levels of nitric oxide (NO), lactate dehydrogenase (LDH), malondialdehyde (MDA), increase antioxidant enzyme activity and alleviate cell apoptosis. CONCLUSION: The present study indicated that the selenium-containing peptides could protect cells from Pb2+ -induced oxidative stress. © 2023 Society of Chemical Industry.


Subject(s)
Selenium , Selenium/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lead/metabolism , NF-E2-Related Factor 2/metabolism , Trypsin/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Peptides/pharmacology , Peptides/metabolism , Hepatocytes/metabolism
11.
Food Sci Biotechnol ; 32(3): 361-369, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36778094

ABSTRACT

Flammulina velutipes polysaccharides (FVP) exhibit many biological activities, but the effects on gut microflora and metabolism were still unclear. Here, we explored the composition of FVP, their influence on human gut microflora composition and metabolites. FVP were used to vitro fermentation through human fecal inoculums. In addition, 16S rRNA sequencing were used to assess the effects of FVP on the gut microbiota. The metabolic profiles were investigated using untargeted metabolomics approaches in the LC-MS platform. The results showed that FVP was mainly consisted of glucose, mannose, xylose, fucose and galactose. FVP is shown to increase the relative abundances of Bifidobacteriaceae, as well as Bacteroidaceae and remarkably decrease the numbers of genera Lachnospiraceae coupled with Enterococcaceae. The differential metabolites were identified and mainly involved the metabolism of glycerophospholipid, linoleic acid and synthesis of unsaturated fatty acids. FVP may exhibit biological activity function by regulating gut microflora composition and metabolites. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01192-y.

12.
Food Chem ; 396: 133664, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35841676

ABSTRACT

It is of great significance to develop safe and efficient dietary selenium sources to improve lead toxicity. In this study, selenate, selenite, SeMet and Se-yeast were supplied to investigate the Se biofortification and bioaccessibility in Pleurotus eryngii. The effects of Se-enriched P. eryngii on lead binding bacteria were investigated via in vitro fermentation. With 40 mg/kg Se in the substrate, the total Se contents of P. eryngii treated with selenite and Se-yeast were 145.22 ± 8.00 mg/kg and 90.01 ± 7.01 mg/kg, respectively. Compared with selenite, Se-yeast treatment significantly increased the organic Se proportion in P. eryngii (SeCys2 2.85 ± 0.17%, MeSeCys 2.33 ± 0.21% and SeMet 78.19 ± 1.58%), which led to higher bioaccessibility. With 1 mg/L lead treatment during in vitro fermentation, Se-enriched P. eryngii promoted the growth of Desulfovibrio, which contributed to the increase of gut microbiota lead adsorption. Se-enriched P. eryngii cultivated with Se-yeast could be used as dietary Se sources for lead toxicity improvement.


Subject(s)
Gastrointestinal Microbiome , Selenium , Adsorption , Biofortification , Fermentation , Lead , Pleurotus , Saccharomyces cerevisiae/metabolism , Selenious Acid , Selenium/metabolism
13.
Crit Rev Food Sci Nutr ; 62(24): 6646-6663, 2022.
Article in English | MEDLINE | ID: mdl-33792430

ABSTRACT

Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.


Subject(s)
Agaricales , Gastrointestinal Microbiome , Diet , Dysbiosis , Gastrointestinal Microbiome/physiology , Humans , Polysaccharides/pharmacology
14.
Food Chem ; 370: 131303, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34662794

ABSTRACT

Pleurotus eryngii is a valuable new edible mushroom variety cultivated on a large scale in China. The polysaccharides found in this mushroom are strong bioactive. This study used simulated digestion and fermentation model to study the digestion and fermentation characteristics of Pleurotus eryngii polysaccharide (PEP) and its effect on gut microbiota. The results showed that the molecular weight of PEP remained unchanged after simulated digestion, and the overall structure of PEP was not destroyed, indicating that PEP was not decomposed during digestion. However, during fermentation, PEP was degraded and utilized by intestinal flora to produce a variety of short-chain fatty acids (SCFAs), which reduced the pH value in fecal cultures. Meanwhile, PEP regulated the composition of intestinal flora, and the relative abundance of Firmicutes increased significantly. These suggests that PEP can be used as a functional food to promote intestinal health and prevent disease.


Subject(s)
Pleurotus , Digestion , Fermentation , Polysaccharides
15.
Front Immunol ; 13: 1034545, 2022.
Article in English | MEDLINE | ID: mdl-36713368

ABSTRACT

Proteins from edible mushrooms have a variety of biological activities. Here, thirteen precious edible mushrooms such as Ophiocordyceps sinensis, Ganoderma lucidum, and Morchella esculenta and nine common edible mushrooms such as Flammulina velutipes, Pleurotus ostreatus, and Pleurotus eryngii, etc., from which their proteins were extracted, their composition analyzed and their immunomodulatory activity assessed. Rare mushrooms are a species of edible mushrooms with higher edible value and medicinal value than common edible mushrooms. The results showed that all the different edible mushroom crude proteins increased the proliferation and phagocytosis of mouse macrophages, and we found that these edible mushroom proteins affected the secretion of reactive oxygen species and nitric oxide by mouse macrophages. Further studies on cytokines secreted by mouse macrophages showed a significant increase in pro-inflammatory cytokines, suggesting that edible mushroom proteins promote the polarisation of macrophages into classical M1-type macrophages, further demonstrating that edible mushroom proteins enhance immunity. It was also found that the immunomodulatory activity of the precious edible mushroom proteins was significantly higher than that of the common edible mushroom proteins. These results have important implications for the processing and product development of edible mushroom proteins.


Subject(s)
Agaricus , Animals , Mice , Cytokines
16.
Int J Biol Macromol ; 189: 11-17, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34411611

ABSTRACT

Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.


Subject(s)
Flammulina/chemistry , Proteoglycans/isolation & purification , Proteoglycans/pharmacology , Amino Acids/analysis , Apoptosis/drug effects , Cell Proliferation/drug effects , Chemical Phenomena , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Malondialdehyde/metabolism , Nitric Oxide/metabolism , Proteoglycans/chemistry , Superoxide Dismutase/metabolism
17.
Food Funct ; 12(9): 3831-3841, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977958

ABSTRACT

The aim of the present study was to determine the inhibitory effects and the potential underlying mechanisms of a novel Pleurotus eryngii ß-type glycosidic polysaccharide (WPEP) on colitis. To achieve this, sixty CD-1 (ICR) mice were divided into six groups including healthy and colitic mice treated with or without WPEP at two different doses (n = 10). The results showed that WPEP displayed a significant inhibitory effect on colitis as indicated by the lowered disease activity index in the treated colitic mice compared to the untreated colitic mice (2.78 ± 0.50 to 1.80 ± 0.17). A decrease in pro-inflammatory cytokine concentrations and pro-inflammatory protein expressions and an increase in the colon length (9.31 ± 0.59 cm to 10.89 ± 1.20 cm) along with histological improvements were also observed in the treated colitic mice compared to the untreated colitic mice in the present study. Flow cytometry and western blotting analysis revealed that these anti-colitis effects were associated with decreased accumulation of CD45+ immune cells, CD45 + F4/80+ macrophages and CD45 + Gr1+ neutrophils. Moreover, the 16s rRNA sequencing analysis of the gut microbiota revealed that WPEP partially reversed gut microbiota dysbiosis in the colitic mice including the decreased abundance of Akkermansia muciniphila (35.80 ± 9.10% to 18.24 ± 6.23%) and Clostridium cocleatum (2.34 ± 1.78% to 0.011 ± 0.003%) and the increased abundance of Bifidobacterium pseudolongum (3.48 ± 2.72% to 9.65 ± 3.74%), Lactobacillus reuteri (0.007 ± 0.002% to 0.21 ± 0.12%), Lactobacillus salivarius (1.23 ± 0.87% to 2.22 ± 1.53%) and Ruminococcus bromii (0.009 ± 0.001% to 3.83 ± 1.98%). In summary, our results demonstrated that WPEP could be utilized as a functional food component in colitis management as well as a potential prebiotic agent to improve inflammation-related disorders.


Subject(s)
Colitis/diet therapy , Colon , Dietary Supplements , Glycosides/administration & dosage , Pleurotus/chemistry , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred ICR , Proteins/metabolism
18.
Food Chem Toxicol ; 151: 112126, 2021 May.
Article in English | MEDLINE | ID: mdl-33722601

ABSTRACT

Soy protein isolate (SPI) is a nutritional commercial product, while the poor solubility and gelling restricts its applications for functional foods. To surmount the challenge presented by this poor solubility, the gelling polysaccharide shows potential in ameliorating SPI. In this study, SPI/Flammulina velutipes polysaccharide (FVP) hydrogels were prepared under four mixing ratios (32:1, 20:1,15:1 and 10:1, w/w) at both pH6.5 and pH3.5, respectively. The stability of hydrogels and its immunostimulatory impact on RAW264.7 cells were assessed. Initial results revealed that water holding capacity increased when increasing the mixing ratios, likely to be the results of enhanced electrostatic interaction between SPI and FVP. The addition of FVP contributed to the improved swelling ratio and lowered the degradation ratio. Such structure feature was shown to be favorable for hydrogels to culture cells. More importantly, SPI/FVP hydrogels demonstrated no cytotoxic effect on cell metabolic activity. The culture of SPI/FVP hydrogels enhanced the immunostimulatory capacity in RAW264.7 cells by increasing phagocytosis and inducing the production of pro-inflammatory cytokines. The performances of the hydrogels made at pH3.5 were superior to those prepared at pH6.5. Our results suggested SPI/FVP hydrogels may provide application potential for the development of functional foods.


Subject(s)
Hydrogels/pharmacology , Macrophages/drug effects , Polysaccharides/pharmacology , Soybean Proteins/chemistry , Animals , Cytokines/metabolism , Hydrogels/chemistry , Hydrogen-Ion Concentration , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , Phagocytosis/drug effects , Polysaccharides/chemistry , RAW 264.7 Cells
19.
J Food Sci ; 85(9): 2822-2831, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32794226

ABSTRACT

The anti-inflammatory effects of two newly identified Pleurotus eryngii polysaccharides (WPEP, NPEP) were determined in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in this study. Characterization analysis revealed that molecular weights of WPEP and NPEP were 167 and 274 kDa, and were mainly composed of glucose with ß-type glycosidic linkages. WPEP and NPEP could significantly inhibit LPS-induced inflammatory responses by regulating the production of NO, Protaglandin E2 (PGE2 ), Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-6 (IL-6). This was through the blocking of the activation of Mitogen-activated protein kinase (MAPK) pathway by inhibiting phosphorylation of p38, extracellular regulation of protein kinases 1/2, and stress-activated protein kinase/jun aminoterminal kinase. Moreover, WPEP and NPEP inhibited NF-κB signaling by reducing nuclear translocation and phosphorylation of p65. Overall, our results, for the first time identified two P. eryngii polysaccharides and demonstrated the related anti-inflammatory effects, which indicated the favorable potential of P. eryngii polysaccharide as specific functional foods. PRACTICAL APPLICATION: This study prepared and characterized newly identified Pleurotus eryngii water-soluble polysaccharide fractions and elucidated the nutritional benefits, mainly the immune response related to anti-inflammatory activities by utilizing lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Collectively, results of this study suggested that the P. eryngii polysaccharide fractions could be considered as potential candidates for exploration in the development of new immunomodulatory agent or functional supplementary foods.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Pleurotus/chemistry , Polysaccharides/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Dinoprostone/immunology , Interleukin-6/genetics , Interleukin-6/immunology , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , NF-kappa B/genetics , NF-kappa B/immunology , Plant Extracts/chemistry , Polysaccharides/chemistry , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
20.
Small ; 16(36): e2001858, 2020 09.
Article in English | MEDLINE | ID: mdl-32519440

ABSTRACT

The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.


Subject(s)
Colon , Dysbiosis , Gastrointestinal Microbiome , Metal Nanoparticles , Proteome , Titanium , Animals , Colon/drug effects , Dysbiosis/chemically induced , Food Contamination , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Metal Nanoparticles/toxicity , Mice , Mice, Obese , Proteome/drug effects , Proteomics , Titanium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...