Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Neurosci Res ; 98(6): 1232-1249, 2020 06.
Article in English | MEDLINE | ID: mdl-32096570

ABSTRACT

Gap junctions (GJs) are widely distributed in brains across the animal kingdom. To visualize the GJ- coupled networks of two major mechanosensory neurons in the ganglia of medicinal leeches, we injected these cells with the GJ-permeable tracer Neurobiotin. When diffusion time was limited to only 30 min, tracer coupling was highly variable for both cells, suggesting a possible modulation of GJ permeability. In invertebrates the innexins (homologs of vertebrate pannexins) form the GJs. Because extracellular adenosine triphosphate (ATP) modulates pannexin and leech innexin hemichannel permeability and is released by leech glial cells following injury, we tested the effects of bath application of ATP after the injection of Neurobiotin and observed a significant increase in the number of neurons tracer coupled to the sensory neurons. This effect required the elevation of intracellular Ca2+ and could be produced by bath application of caffeine. Conversely, scavenging endogenous extracellular ATP with the ATPase apyrase decreased the number of coupled cells. ATP also increased electrical conductance and tracer permeability between the bilateral Retzius neurons. This modulatory effect of ATP on GJ coupling was blocked by siRNA knockdown of a P1-like adenosine receptor. Finally, exposure of leech ganglia to extracellular ATP induced a characteristic low frequency (<0.3 Hz) rhythmic bursting activity that was roughly synchronous among multiple neurons, a behavior that was significantly attenuated by the GJ blocker octanol. These findings highlight the mediation by ATP of a robust physiological mechanism for modifying neuronal circuits by rapidly recruiting neurons into active networks and entraining synchronized bursting activity.


Subject(s)
Adenosine Triphosphate/metabolism , Gap Junctions/metabolism , Neurons/metabolism , Receptors, Purinergic P1/metabolism , Animals , Calcium/metabolism , Leeches
2.
Anal Chem ; 89(16): 8251-8258, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28692290

ABSTRACT

Mass spectrometry-based protein analysis has become an important methodology for proteogenomic mapping by providing evidence for the existence of proteins predicted at the genomic level. However, screening and identification of proteins directly on tissue samples, where histological information is preserved, remain challenging. Here we demonstrate that the ambient ionization source, nanospray desorption electrospray ionization (nanoDESI), interfaced with light microscopy allows for protein profiling directly on animal tissues at the microscopic scale. Peptide fragments for mass spectrometry analysis were obtained directly on ganglia of the medicinal leech (Hirudo medicinalis) without in-gel digestion. We found that a hypothetical protein, which is predicted by the leech genome, is highly expressed on the specialized neural cells that are uniquely found in adult sex segmental ganglia. Via this top-down analysis, a post-translational modification (PTM) of tyrosine sulfation to this neuropeptide was resolved. This three-in-one platform, including mass spectrometry, microscopy, and genome mining, provides an effective way for mappings of proteomes under the lens of a light microscope.


Subject(s)
Mass Spectrometry/methods , Microscopy/methods , Neuropeptides/chemistry , Proteogenomics/methods , Amino Acid Sequence , Animals , Ganglia/chemistry , Hirudo medicinalis/chemistry , Neuropeptides/metabolism , Protein Processing, Post-Translational
3.
Dev Neurobiol ; 77(5): 575-586, 2017 05.
Article in English | MEDLINE | ID: mdl-27512961

ABSTRACT

The unique morphology and pattern of synaptic connections made by a neuron during development arise in part by an extended period of growth in which cell-cell interactions help to sculpt the arbor into its final shape, size, and participation in different synaptic networks. Recent experiments highlight a guiding role played by gap junction proteins in controlling this process. Ectopic and overexpression studies in invertebrates have revealed that the selective expression of distinct gap junction genes in neurons and glial cells is sufficient to establish selective new connections in the central nervous systems of the leech (Firme et al. [2012]: J Neurosci 32:14265-14270), the nematode (Rabinowitch et al. [2014]: Nat Commun 5:4442), and the fruit fly (Pézier et al., 2016: PLoS One 11:e0152211). We present here an overview of this work and suggest that gap junction proteins, in addition to their synaptic/communicative functions, have an instructive role as recognition and adhesion factors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 575-586, 2017.


Subject(s)
Connexins/physiology , Neurons/physiology , Animals , Connexins/genetics , Neurons/metabolism
4.
J Comp Neurol ; 522(7): 1445-53, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24596113

ABSTRACT

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Animals , Brain Mapping/standards , Evolution, Chemical , Gene Expression/physiology , Humans , Information Dissemination/methods , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Species Specificity
5.
Brain Behav Evol ; 83(1): 1-8, 2014.
Article in English | MEDLINE | ID: mdl-24603302

ABSTRACT

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Subject(s)
Biological Evolution , Brain Mapping , Brain/anatomy & histology , Brain/physiology , Anatomy, Comparative , Animals , Humans , Species Specificity
6.
FEBS Lett ; 588(8): 1470-9, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24560787

ABSTRACT

Recent evidence indicates that gap junction (GJ) proteins can play a critical role in controlling neuronal connectivity as well as cell morphology in the developing nervous system. GJ proteins may function analogously to cell adhesion molecules, mediating cellular recognition and selective neurite adhesion. Moreover, during synaptogenesis electrical synapses often herald the later establishment of chemical synapses, and thus may help facilitate activity-dependent sculpting of synaptic terminals. Recent findings suggest that the morphology and connectivity of embryonic leech neurons are fundamentally organized by the type and perhaps location of the GJ proteins they express. For example, ectopic expression in embryonic leech neurons of certain innexins that define small GJ-linked networks of cells leads to the novel coupling of the expressing cell into that network. Moreover, gap junctions appear to mediate interactions among homologous neurons that modulate process outgrowth and stability. We propose that the selective formation of GJs between developing neurons and perhaps glial cells in the CNS helps orchestrate not only cellular synaptic connectivity but also can have a pronounced effect on the arborization and morphology of those cells involved.


Subject(s)
Connexins/metabolism , Neurons/metabolism , Animals , Cell Adhesion , Cell Growth Processes , Connexins/genetics , Humans , Nerve Net/embryology , Nerve Net/growth & development , Neuroglia/metabolism , Neuroglia/physiology , Neurons/physiology , Synapses/metabolism , Synapses/physiology
7.
J Neurosci ; 33(42): 16673-83, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24133270

ABSTRACT

Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.


Subject(s)
Connexins/metabolism , Gap Junctions/physiology , Hirudo medicinalis/metabolism , Neurons/metabolism , Animals , Axons/physiology , Cell Communication/physiology , Drosophila
8.
Proc Natl Acad Sci U S A ; 110(37): 14855-60, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23969833

ABSTRACT

There is immense cellular and molecular heterogeneity in biological systems. Here, we demonstrate the utility of integrating an inverted light microscope with an ambient ionization source, nanospray electrospray desorption ionization, attached to a high-resolution mass spectrometer to characterize the molecular composition of mouse spinal cords. We detected a broad range of molecules, including peptides and proteins, as well as metabolites such as lipids, sugars, and other small molecules, including S-adenosyl methionine and glutathione, through top-down MS. Top-down analysis revealed variation in the expression of Hb, including the transition from fetal to adult Hb and heterogeneity in Hb subunits consistent with the genetic diversity of the mouse models. Similarly, temporal changes to actin-sequestering proteins ß-thymosins during development were observed. These results demonstrate that interfacing microscopy with ambient ionization provides the means to perform targeted in situ ambient top-down mass spectral analysis to study the pattern of proteins, lipids, and sugars in biologically heterogeneous samples.


Subject(s)
Microscopy/methods , Spectrometry, Mass, Electrospray Ionization/methods , Spinal Cord/growth & development , Spinal Cord/metabolism , Amino Acid Sequence , Animals , Body Patterning , Carbohydrate Metabolism , Female , Hemoglobins/genetics , Hemoglobins/metabolism , Lipid Metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Mice, Transgenic , Microscopy/instrumentation , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Pregnancy , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spinal Cord/embryology , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods , Thymosin/genetics , Thymosin/metabolism
9.
Dev Neurobiol ; 73(8): 571-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23447124

ABSTRACT

Neurons and glia of the medicinal leech CNS express different subsets of the 21 innexin genes encoded in its genome. We report here that the punctal distributions of fluorescently tagged innexin transgenes varies in a stereotypical pattern depending on the innexin expressed. Furthermore, whereas certain innexins colocalize extensively (INX1 and INX14), others do not (e.g., INX1 and INX2 or INX6). We then demonstrate that the mutation of a highly conserved proline residue in the second transmembrane domain of innexins creates a gap junction protein with dominant negative properties. Coexpressing the mutated INX1 gene with its wild type blocks the formation of fluorescent puncta and decouples the expressing neuron from its normal gap junction-coupled network of cells. Similarly, expression of an INX2 mutant transgene (a glial cell innexin), blocks endogenous INX2 puncta and wild-type transgene puncta, and decouples the glial cell from the other glial cells in the ganglion. We show in cell culture with dye-uptake and plasma membrane labeling experiments that the mutant innexin transgene is not expressed on the cell membrane but instead appears to accumulate in the cell's perinuclear region. Lastly, we use these mutant innexin transgenes to show that the INX1 mutant transgene blocks not only INX1 puncta formation, but also puncta of INX14, with which INX1 usually colocalizes. By contrast, the formation of INX6 puncta was unaffected by the INX1 mutant. Together, these experiments suggest that leech innexins can selectively interact with one another to form gap junction plaques, which are heterogeneously located in cellular arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 571-586, 2013.


Subject(s)
Connexins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neuroglia/metabolism , Neurons/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Connexins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gap Junctions/genetics , Gap Junctions/metabolism , Leeches/genetics , Leeches/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism
10.
J Neurosci ; 32(41): 14265-70, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23055495

ABSTRACT

Fifteen of the 21 innexin (Inx) genes (Hve-inx) found in the genome of the medicinal leech, Hirudo verbana, are expressed in the CNS (Kandarian et al., 2012). Two are expressed pan-neuronally, while the others are restricted in their expression to small numbers of cells, in some cases reflecting the membership of known networks of electrically coupled and dye-coupled neurons or glial cells. We report here that when Hve-inx genes characteristic of discrete coupled networks were expressed ectopically in neurons known not to express them, the experimental cells were found to become dye coupled with the other cells in that network. Hve-inx6 is normally expressed by only three neurons in each ganglion, which form strongly dye-coupled electrical connections with each other [Shortening-Coupling interneuron (S-CI) network] (Muller and Scott, 1981; Dykes and Macagno, 2006). But when Hve-inx6 was ectopically expressed in a variety of central embryonic neurons, those cells became dye coupled with the S-CI network. Similarly, Hve-inx2 is normally uniquely expressed by the ganglion's large glial cells, but when it was ectopically expressed in different central neurons, they became dye coupled to the glial cells. In contrast, overexpression of the pan-neuronal Inx genes Hve-inx1 and Hve-inx14 did not yield any novel instances of dye coupling to pre-existent neuronal networks. These results reveal that expression of certain innexins is sufficient to couple individual neurons to pre-existing networks in the CNS. We propose that a primary determinant of selective neuronal connectivity and circuit formation in the leech is the surface expression of unique subsets of gap junctional proteins.


Subject(s)
Connexins/biosynthesis , Connexins/genetics , Gene Expression Regulation, Developmental , Nerve Net/metabolism , Neuroglia/metabolism , Neurons/metabolism , Amino Acid Sequence , Animals , Choristoma/genetics , Choristoma/metabolism , Leeches , Molecular Sequence Data , Nerve Net/chemistry , Neuroglia/chemistry , Neurons/chemistry
11.
Mol Cell Neurosci ; 45(4): 430-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20708686

ABSTRACT

LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.


Subject(s)
Amphibian Proteins/metabolism , Central Nervous System/metabolism , Leeches/metabolism , Nerve Regeneration/physiology , Neurons/metabolism , Protein Tyrosine Phosphatases/metabolism , Amphibian Proteins/genetics , Animals , Central Nervous System/injuries , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , In Situ Hybridization, Fluorescence , Nerve Crush , Protein Tyrosine Phosphatases/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
12.
BMC Genomics ; 11: 407, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20579359

ABSTRACT

BACKGROUND: The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. RESULTS: A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. CONCLUSIONS: The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.


Subject(s)
Central Nervous System/immunology , Databases, Genetic , Gene Expression Profiling , Hirudo medicinalis/genetics , Hirudo medicinalis/immunology , Immunity, Innate/genetics , Sequence Homology, Nucleic Acid , Adaptive Immunity/genetics , Animals , Antigens, CD/genetics , Antimicrobial Cationic Peptides/genetics , Central Nervous System/metabolism , Central Nervous System/physiology , Cytokines/genetics , Databases, Nucleic Acid , Expressed Sequence Tags/metabolism , Hirudo medicinalis/embryology , Humans , RNA, Messenger/genetics , Receptors, Pattern Recognition/genetics , Regeneration/genetics , Species Specificity , Toll-Like Receptors/genetics
13.
Dev Biol ; 344(1): 346-57, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20541541

ABSTRACT

LAR-like receptor protein tyrosine phosphatases (RPTPs), which are reported to be highly expressed in the nervous systems of most bilaterian animals, have been implicated in the regulation of critical developmental processes, such as neuronal pathfinding, cell adhesion and synaptogenesis. Here we report that two LAR-like RPTPs in the medicinal leech, HmLAR1 and HmLAR2, play roles in regulating the size and density of neuronal arbors within the developing nervous system and in the body wall. Employing single-cell RNAi knockdown and transgene expression techniques, we demonstrate that the expression level of HmLAR1 is directly correlated with the density of an identified neuron's arborization. Knocking down HmLAR1 mRNA levels in the mechanosensory pressure (P) neurons produces a reduced central arbor and a smaller arbor in the peripheral body wall, with fewer terminal branches. By contrast, overexpression of this receptor in a P cell leads to extensive neuronal sprouting, including many supernumerary neurites and terminal branches as well as, in some instances, the normal monopolar morphology of the P cell becoming multipolar. We also report that induced neuronal sprouting requires the expression of the receptor's membrane tethered ectodomain, including the NH(2)-Ig domains, but not of the intracellular phosphatase domains of the receptor. Interestingly, sprouting could be elicited upon ectopic expression of HmLAR1 and the related RPTP, HmLAR2 in the P and other neurons, including those that do not normally express either RPTP, suggesting that the substrates involved in HmLAR-induced sprouting are present in most neurons irrespective of whether they normally express these LAR-like RPTPs. Our data are consistent with the hypothesis that the receptors' ectodomains promote an adhesive interaction that enhances the maintenance of new processes.


Subject(s)
Gene Expression Regulation, Developmental , Leeches/physiology , Neurons/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Actins/metabolism , Animals , Cell Adhesion , Cytoskeleton/metabolism , Green Fluorescent Proteins/metabolism , Leeches/embryology , Models, Biological , Nervous System/metabolism , Neurites/metabolism , Pressure , RNA Interference , Transgenes
14.
J Vis Exp ; (14)2008 Apr 17.
Article in English | MEDLINE | ID: mdl-19066579

ABSTRACT

In this video, we show the use of a pneumatic capillary gun for the accurate biolistic delivery of reagents into live tissue. We use the procedure to perturb gene expression patterns in selected segments of leech embryos, leaving the untreated segments as internal controls. The pneumatic capillary gun can be used to reach internal layers of cells at early stages of development without opening the specimen. As a method for localized introduction of substances into living tissues, the biolistic delivery with the gun has several advantages: it is fast, contact-free and non-destructive. In addition, a single capillary gun can be used for independent delivery of different substances. The delivery region can have lateral dimensions of approximately 50-150 microm and extends over approximately 15 microm around the mean penetration depth, which is adjustable between 0 and 50 microm. This delivery has the advantage of being able to target a limited number of cells in a selected location intermediate between single cell knock down by microinjection and systemic knockdown through extracellular injections or by means of genetic approaches. For knocking down or knocking in the expression of the axon guidance molecule Netrin, which is naturally expressed by some central neurons and in the ventral body wall, but not the dorsal domain, we deliver molecules of dsRNA or plasmid-DNA into the body wall and central ganglia. This procedure includes the following steps: (i) preparation of the experimental setup for a specific assay (adjusting the accelerating pressure), (ii) coating the particles with molecules of dsRNA or DNA, (iii) loading the coated particles into the gun, up to two reagents in one assay, (iv) preparing the animals for the particle delivery, (v) delivery of coated particles into the target tissue (body wall or ganglia), and (vi) processing the embryos (immunostaining, immunohistochemistry and neuronal labeling) to visualize the results, usually 2 to 3 days after the delivery. When the particles were coated with netrin dsRNA, they caused clearly visible knock-down of netrin expression that only occurred in cells containing particles (usually, 1-2 particles per cell). Particles coated with a plasmid encoding EGFP induced fluorescence in neuronal cells when they stopped in their nuclei.


Subject(s)
Embryo, Nonmammalian/metabolism , Gene Expression , Genetic Techniques/instrumentation , Leeches/genetics , RNA Interference , RNA/genetics , Animals , Embryo, Nonmammalian/embryology , Leeches/embryology , Leeches/metabolism , RNA/analysis
15.
Dev Biol ; 320(1): 215-25, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18582860

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) have been shown to play key roles in regulating axon guidance and synaptogenesis. HmLAR2, one of two closely related LAR-like RPTPs in the embryonic leech, is expressed in a few central neurons and in a unique segmentally-iterated peripheral cell, the comb cell (CC). Here we show that tagged HmLAR2-EGFP has a punctate pattern of expression in the growth cones of the CC, particularly at the tips of extending filopodia. Moreover, although expression of the wild-type EGFP-tagged receptor does not affect CC growth cone morphology, expression of a putative dominant-negative mutant of the receptor, CS-HmLAR2, leads to the enlargement of the growth cones, a shortening of filopodia, and errors in cellular tiling. RNAi of several candidate substrate signaling proteins, Lena (leech Ena/Vasp), beta-integrin and paxillin, but not beta-catenin, phenocopies particular aspects of the effects of HmLAR2 RNAi. For paxillin, which co-localizes with HmLAR2 at growth cone puncta, knock-down led to a reduction in the number of such puncta. Together, our data suggests that HmLAR2 regulates the morphology of the growth cone by controlling F-actin polymerization and focal adhesion complexes.


Subject(s)
Focal Adhesions/enzymology , Growth Cones/enzymology , Leeches/enzymology , Protein Tyrosine Phosphatases/metabolism , Pseudopodia/enzymology , Animals , CHO Cells , Catalysis , Cricetinae , Cricetulus , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , Leeches/cytology , Leeches/embryology , Leeches/genetics , Mutation/genetics , Paxillin/metabolism , Phenotype , Phosphotyrosine/metabolism , Protein Binding , Protein Transport , RNA Interference , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transgenes
16.
FEBS Lett ; 581(29): 5703-8, 2007 Dec 11.
Article in English | MEDLINE | ID: mdl-18035059

ABSTRACT

Injury to the central nervous system triggers glial calcium waves in both vertebrates and invertebrates. In vertebrates the pannexin1 ATP-release channel appears to provide for calcium wave initiation and propagation. The innexins, which form invertebrate gap junctions and have sequence similarity with the pannexins, are candidates to form non-junctional membrane channels. Two leech innexins previously demonstrated in glia were expressed in frog oocytes. In addition to making gap junctions, innexins also formed non-junctional membrane channels with properties similar to those of pannexons. In addition, carbenoxolone reversibly blocked the loss of carboxyfluorescein dye into the bath from the giant glial cells in the connectives of the leech nerve cord, which are known to express the innexins we assayed.


Subject(s)
Connexins/physiology , Animals , Calcium Signaling , Cytoplasm/metabolism , Gap Junctions/metabolism , Leeches/metabolism , Models, Biological , Neuroglia/metabolism , Oocytes/metabolism , Patch-Clamp Techniques , Xenopus/metabolism
17.
J Comp Neurol ; 500(5): 850-62, 2007 Feb 10.
Article in English | MEDLINE | ID: mdl-17177256

ABSTRACT

In the leech embryo, the peripheral comb cell (CC) sends out many nonoverlapping, growth cone-tipped processes that grow in parallel and serve as a scaffold for the migrating myocytes of the later-developing oblique muscle layer. To explore how the parallel arrangement is generated we first examined the arrangement of CC cytoskeletal components by expressing a tubulin-binding protein and actin, both tagged with fluorescent reporters. This revealed that the growth cones were compartmentalized into F-actin-rich filopodia and a microtubule-rich central region. Time-lapse analysis with a 2-photon laser scanning microscope revealed that the growth cones of the CC are highly dynamic, undergoing rapid filopodial extension and retraction. Measurements of filopodial lifespan and length revealed that most filopodia at the leading edge of the growth cone achieved significantly longer lifespans and length than lateral filopodia. Furthermore, for the short-lived lateral filopodia, apparent interaction with a neighboring process was found to be a significant predictor of their nearly immediate (within 2-4 minutes) retraction. When contact was experimentally prevented by ablating individual CCs, the filopodia from the growth cones of adjacent segmental neighbors were found to be significantly lengthened in the direction of the removed homolog. Treatment with low doses of cytochalasin D to disrupt F-actin assembly led to filopodial retraction and growth cone collapse and resulted in the bifurcation of many CC processes, numerous crossover errors, and the loss of parallelism. These findings indicate the existence of a contact-mediated repulsive interaction between processes of the CC.


Subject(s)
Growth Cones/physiology , Leeches/embryology , Nerve Net/embryology , Neurites/physiology , Pseudopodia/physiology , Actins/metabolism , Animals , Cytoskeleton/metabolism , Embryo, Nonmammalian , Leeches/cytology , Leeches/metabolism , Morphogenesis/physiology , Nerve Net/cytology , Nerve Net/metabolism , Neurons/cytology , Neurons/physiology
18.
Proteomics ; 6(17): 4817-25, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16888763

ABSTRACT

Once considered as lacking intrinsic immune mechanisms, the CNS of vertebrates is now known to be capable of mounting its own innate immune response. Interestingly, while invertebrates have been very useful in the interpretation of general vertebrate innate immunity mechanisms, only scarce data are available on the immune response of nervous tissue within this group. This study provides new data on the innate immune response of medicinal leech Hirudo medicinalis CNS. We identified several spots in 2-D gels of leech CNS proteins that showed specific changes following bacterial challenge, thus demonstrating the ability of the leech nervous system to mount a response to an immune stress. Protein identifications were based on comparison of sequence data with publicly available databases and a recently established leech ESTs database. The broad nature of the identified proteins suggests a clear involvement of cytoskeletal rearrangements, endoplasmic reticulum stress, modulation of synaptic activity and calcium mobilization, all during the first 24 hours of this response. Moreover, several of these proteins are specifically expressed in glial cells, suggesting an important role for glial cells in the immune response of the leech nervous system, similar to what has been observed in vertebrates.


Subject(s)
Leeches/metabolism , Leeches/microbiology , Nervous System/metabolism , Nervous System/microbiology , Proteome/metabolism , Amino Acid Sequence , Animals , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/physiology , Micrococcus luteus/physiology , Molecular Sequence Data , Protein Processing, Post-Translational , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Neurosci Methods ; 156(1-2): 145-53, 2006 Sep 30.
Article in English | MEDLINE | ID: mdl-16621015

ABSTRACT

The expression of exogenous genes in neurons and other cells has become a powerful means for studying the function of encoded proteins. We report here on the isolation and functional analysis of three Hirudo medicinalis actin gene promoters and the 5' UTR of a leech elongation factor-1alpha (HmEF-1alpha) gene. In situ hybridization labeling revealed that the EF-1alpha gene and one of the actins had pan-neuronal expression, whereas, the other two actin genes were expressed by the embryo's body wall musculature. Comparative analysis shows that they all display many features typical of actin and EF-1alpha promoters from other species, including canonical TATA box sequences and predicted general transcription factor binding sites (such as CCATT, CarB boxes and CG-rich regions). The ability of these 5' UTR sequences to drive expression of the enhanced green fluorescent protein (EGFP), leech cytoplasmic actin and leech synaptobrevin was examined. Direct intracellular nuclear, but not cytoplasmic, microinjection of each of the promoter sequences was found to produce reliably cellular expression of the reporter construct in both neuronal and muscle cells. These results introduce reliable and effective methods to selectively express genes in individual cells of the leech in vivo during embryonic development.


Subject(s)
DNA/genetics , Gene Expression/physiology , Gene Targeting/methods , Hirudo medicinalis/genetics , Promoter Regions, Genetic/genetics , 5' Untranslated Regions/genetics , Actins/genetics , Amino Acid Sequence , Animals , CHO Cells , Cell Nucleus/genetics , Cloning, Molecular , Cricetinae , Embryo, Nonmammalian/physiology , Green Fluorescent Proteins/genetics , Immunohistochemistry , In Situ Hybridization , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Plasmids/genetics , Tissue Distribution , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...