Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
bioRxiv ; 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38260617

ABSTRACT

Chemokines play critical roles in the recruitment and activation of immune cells in both homeostatic and pathologic conditions. Here, we examined chemokine ligand-receptor pairs to better understand the immunopathogenesis of cutaneous lupus erythematosus (CLE), a complex autoimmune connective tissue disorder. We used suction blister biopsies to measure cellular infiltrates with spectral flow cytometry in the interface dermatitis reaction, as well as 184 protein analytes in interstitial skin fluid using Olink targeted proteomics. Flow and Olink data concordantly demonstrated significant increases in T cells and antigen presenting cells (APCs). We also performed spatial transcriptomics and spatial proteomics of punch biopsies using digital spatial profiling (DSP) technology on CLE skin and healthy margin controls to examine discreet locations within the tissue. Spatial and Olink data confirmed elevation of interferon (IFN) and IFN-inducible CXCR3 chemokine ligands. Comparing involved versus uninvolved keratinocytes in CLE samples revealed upregulation of essential inflammatory response genes in areas near interface dermatitis, including AIM2. Our Olink data confirmed upregulation of Caspase 8, IL-18 which is the final product of AIM2 activation, and induced chemokines including CCL8 and CXCL6 in CLE lesional samples. Chemotaxis assays using PBMCs from healthy and CLE donors revealed that T cells are equally poised to respond to CXCR3 ligands, whereas CD14+CD16+ APC populations are more sensitive to CXCL6 via CXCR1 and CD14+ are more sensitive to CCL8 via CCR2. Taken together, our data map a pathway from keratinocyte injury to lymphocyte recruitment in CLE via AIM2-Casp8-IL-18-CXCL6/CXCR1 and CCL8/CCR2, and IFNG/IFNL1-CXCL9/CXCL11-CXCR3.

2.
Sci Rep ; 14(1): 787, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191799

ABSTRACT

The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.


Subject(s)
Fibrinogen , Melanoma , Ovarian Neoplasms , Animals , Female , Humans , Mice , Antigen-Presenting Cells , Carcinoma, Ovarian Epithelial , Melanoma/genetics , Melanoma/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tumor Microenvironment
3.
Acad Med ; 99(2): 198-207, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37856849

ABSTRACT

PURPOSE: To revise the 2009 Canadian Geriatrics Society (CGS) Core Competencies in the Care of Older Persons for Canadian Medical Students by applying current frameworks and using a modified Delphi process. METHOD: The working group chose the Geriatric 5Ms model and CanMEDS framework to develop and structure the competencies. National (i.e., Canadian) Delphi participants were recruited, and 3 Delphi survey rounds were conducted from 2019 to 2021. Each survey round collected quantitative data using a 7-point Likert scale (LS) and qualitative data using free-text comments. The purpose of the first round was to establish the importance of the components of the proposed competencies (categorized into 13 subsections) and identify additional themes. The second round assessed agreement with 31 proposed competencies organized into 7 themes: aging, caring for older adults, mind, mobility, medications, multicomplexity, and matters the most. The third survey-rated agreement levels after further revisions to the competencies were applied. The final 33 competencies were shared with survey participants for feedback and other stakeholders for external validation. RESULTS: Mean LSs for the importance of the 13 competency component subsections on the first survey varied from 5.11 to 6.54, with an agreement level of 73%-93%. New themes emerged from the qualitative comments. Mean LSs for the 31 competencies on the second survey ranged from 5.57 to 6.81, with an agreement level of 80%-97%. Mean LSs for the revised competencies on the third survey ranged from 5.83 to 6.65, with an agreement level of 83%-95%. CONCLUSIONS: The authors developed the 33 Aging Care 5Ms Competencies for Canadian medical students using a consensus process. The competencies fulfill an important need in medical education, and ultimately, society. The authors strongly believe that the competencies can be woven into existing undergraduate medical curricula through purposeful integration and collaboration, including with other specialties.


Subject(s)
Clinical Competence , Students, Medical , Humans , Aged , Aged, 80 and over , Delphi Technique , Canada , Curriculum
5.
Commun Biol ; 6(1): 1152, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957414

ABSTRACT

Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical models that recapitulate human disease are critical to develop new therapeutic approaches. Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of non-malignant cell types but have expanded in number, varying in the cell type of origin, method for transformation, and ultimately, the properties of the tumours they produce. Here we have performed a comparative analysis of high-grade serous ovarian cancer models based on transcriptomic profiling of 22 cell line models, and intrabursal and intraperitoneal tumours from 12. Among cell lines, we identify distinct signalling activity, such as elevated inflammatory signalling in STOSE and OVE16 models, and MAPK/ERK signalling in ID8 and OVE4 models; metabolic differences, such as reduced glycolysis-associated expression in several engineered ID8 subclones; and relevant functional properties, including differences in EMT activation, PD-L1 and MHC class I expression, and predicted chemosensitivity. Among tumour samples, we observe increased variability and stromal content among intrabursal tumours. Finally, we predict differences in the microenvironment of ID8 models engineered with clinically relevant mutations. We anticipate that this work will serve as a valuable resource, providing new insight to help select models for specific experimental objectives.


Subject(s)
Ovarian Neoplasms , Animals , Mice , Humans , Female , Ovarian Neoplasms/pathology , Gene Expression Profiling , Signal Transduction , Tumor Microenvironment/genetics
6.
Vet Clin North Am Equine Pract ; 39(3): 553-563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37607855

ABSTRACT

Mesenchymal stem cells (MSCs) are powerful immunomodulatory cells that act via multiple mechanisms to coordinate, inhibit, and control the cells of the immune system. MSCs act as rescuers for various damaged or degenerated cells of the body via (1) cytokines, growth factors, and signaling molecules; (2) extracellular vesicle (exosome) signaling; and (3) direct donation of mitochondria. Several studies evaluating the efficacy of MSCs have used MSCs grown using xenogeneic media, which may reduce or eliminate efficacy. Although more research is needed to optimize the anti-inflammatory potential of MSCs, there is ample evidence that MSC therapeutics are worthy of further development.


Subject(s)
Biological Products , Horse Diseases , Mesenchymal Stem Cells , Horses , Animals , Biological Products/therapeutic use , Biological Products/metabolism , Horse Diseases/therapy , Horse Diseases/metabolism , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism , Immunomodulation
7.
Biol Reprod ; 108(2): 279-291, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36440965

ABSTRACT

Mammalian folliculogenesis is a complex process that involves the regulation of chromatin structure for gene expression and oocyte meiotic resumption. The SWI/SNF complex is a chromatin remodeler using either Brahma-regulated gene 1 (BRG1) or BRM (encoded by Smarca4 and Smarca2, respectively) as its catalytic subunit. SMARCA4 loss of expression is associated with a rare type of ovarian cancer; however, its function during folliculogenesis remains poorly understood. In this study, we describe the phenotype of BRG1 mutant mice to better understand its role in female fertility. Although no tumor emerged from BRG1 mutant mice, conditional depletion of Brg1 in the granulosa cells (GCs) of Brg1fl/fl;Amhr2-Cre mice caused sterility, whereas conditional depletion of Brg1 in the oocytes of Brg1fl/fl;Gdf9-Cre mice resulted in subfertility. Recovery of cumulus-oocyte complexes after natural mating or superovulation showed no significant difference in the Brg1fl/fl;Amhr2-Cre mutant mice and significantly fewer oocytes in the Brg1fl/fl;Gdf9-Cre mutant mice compared with controls, which may account for the subfertility. Interestingly, the evaluation of oocyte developmental competence by in vitro culture of retrieved two-cell embryos indicated that oocytes originating from the Brg1fl/fl;Amhr2-Cre mice did not reach the blastocyst stage and had higher rates of mitotic defects, including micronuclei. Together, these results indicate that BRG1 plays an important role in female fertility by regulating granulosa and oocyte functions during follicle growth and is needed for the acquisition of oocyte developmental competence.


Subject(s)
Chromatin , Neoplasms , Animals , Female , Mice , Chromatin Assembly and Disassembly , Fertility/genetics , Mammals
8.
Front Immunol ; 14: 1295208, 2023.
Article in English | MEDLINE | ID: mdl-38235131

ABSTRACT

Introduction: Epithelial ovarian cancer (OC) stands as one of the deadliest gynecologic malignancies, urgently necessitating novel therapeutic strategies. Approximately 60% of ovarian tumors exhibit reduced expression of major histocompatibility complex class I (MHC I), intensifying immune evasion mechanisms and rendering immunotherapies ineffective. NOD-like receptor CARD domain containing 5 (NLRC5) transcriptionally regulates MHC I genes and many antigen presentation machinery components. We therefore explored the therapeutic potential of NLRC5 in OC. Methods: We generated OC cells overexpressing NLRC5 to rescue MHC I expression and antigen presentation and then assessed their capability to respond to PD-L1 blockade and an infected cell vaccine. Results: Analysis of microarray datasets revealed a correlation between elevated NLRC5 expression and extended survival in OC patients; however, NLRC5 was scarcely detected in the OC tumor microenvironment. OC cells overexpressing NLRC5 exhibited slower tumor growth and resulted in higher recruitment of leukocytes in the TME with lower CD4/CD8 T-cell ratios and increased activation of T cells. Immune cells from peripheral blood, spleen, and ascites from these mice displayed heightened activation and interferon-gamma production when exposed to autologous tumor-associated antigens. Finally, as a proof of concept, NLRC5 overexpression within an infected cell vaccine platform enhanced responses and prolonged survival in comparison with control groups when challenged with parental tumors. Discussion: These findings provide a compelling rationale for utilizing NLRC5 overexpression in "cold" tumor models to enhance tumor susceptibility to T-cell recognition and elimination by boosting the presentation of endogenous tumor antigens. This approach holds promise for improving antitumoral immune responses in OC.


Subject(s)
Ovarian Neoplasms , Vaccines , Humans , Female , Animals , Mice , NLR Proteins , Caspase Activation and Recruitment Domain , Tumor Microenvironment , Intracellular Signaling Peptides and Proteins/metabolism , Histocompatibility Antigens Class I , Ovarian Neoplasms/genetics , Antigens, Neoplasm
9.
medRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38196582

ABSTRACT

Background: In observational studies, the association between alcohol consumption and dementia is mixed. Methods: We performed two-sample Mendelian randomization (MR) using summary statistics from genome-wide association studies of weekly alcohol consumption and late-onset Alzheimer's disease and one-sample MR in the Health and Retirement Study (HRS), wave 2012. Inverse variance weighted two-stage regression provided odds ratios of association between alcohol exposure and dementia or cognitively impaired, non-dementia relative to cognitively normal. Results: Alcohol consumption was not associated with late-onset Alzheimer's disease using two-sample MR (OR=1.15, 95% confidence interval (CI):[0.78, 1.72]). In HRS, doubling weekly alcohol consumption was not associated with dementia (African ancestries, n=1,322, OR=1.00, 95% CI [0.45, 2.25]; European ancestries, n=7,160, OR=1.37, 95% CI [0.53, 3.51]) or cognitively impaired, non-dementia (African ancestries, n=1,322, OR=1.17, 95% CI [0.69, 1.98]; European ancestries, n=7,160, OR=0.75, 95% CI [0.47, 1.22]). Conclusion: Alcohol consumption was not associated with cognitively impaired, non-dementia or dementia status.

10.
Cancer Res Commun ; 2(6): 417-433, 2022 06.
Article in English | MEDLINE | ID: mdl-36311166

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer with an imperative need for new treatments. Immunotherapy has had marked success in some cancer types; however, clinical trials studying the efficacy of immune checkpoint inhibitors for the treatment of EOC benefited less than 15% of patients. Given that EOC develops from multiple tissues in the reproductive system and metastasizes widely throughout the peritoneal cavity, responses to immunotherapy are likely hindered by heterogeneous tumor microenvironments (TME) containing a variety of immune profiles. To fully characterize and compare syngeneic model systems that may reflect this diversity, we determined the immunogenicity of six ovarian tumor models in vivo, the T and myeloid profile of orthotopic tumors and the immune composition and cytokine profile of ascites, by single-cell RNA sequencing, flow cytometry and IHC. The selected models reflect the different cellular origins of EOC (ovarian and fallopian tube epithelium) and harbor mutations relevant to human disease, including Tp53 mutation, PTEN suppression, and constitutive KRAS activation. ID8-p53-/- and ID8-C3 tumors were most highly infiltrated by T cells, whereas STOSE and MOE-PTEN/KRAS tumors were primarily infiltrated by tumor associated macrophages and were unique in MHC class I and II expression. MOE-PTEN/KRAS tumors were capable of forming T cell clusters. This panel of well-defined murine EOC models reflects some of the heterogeneity found in human disease and can serve as a valuable resource for studies that aim to test immunotherapies, explore the mechanisms of immune response to therapy, and guide selection of treatments for patient populations.


Subject(s)
Ovarian Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Humans , Female , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Ovarian Neoplasms/therapy , Carcinoma, Ovarian Epithelial/therapy , Immunotherapy , Tumor Microenvironment
11.
mBio ; 13(6): e0254622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36314798

ABSTRACT

The first encounter with influenza virus biases later immune responses. This "immune imprinting," formerly from infection within a few years of birth, is in the United States now largely from immunization with a quadrivalent, split vaccine (IIV4 [quadrivalent inactivated influenza vaccine]). In a pilot study of IIV4 imprinting, we used single-cell cultures, next-generation sequencing, and plasma antibody proteomics to characterize the primary antibody responses to influenza in two infants during their first 2 years of seasonal influenza vaccination. One infant, who received only a single vaccination in year 1, contracted an influenza B virus (IBV) infection between the 2 years, allowing us to compare imprinting by infection and vaccination. That infant had a shift in hemagglutinin (HA)-reactive B cell specificity from largely influenza A virus (IAV) specific in year 1 to IBV specific in year 2, both before and after the year 2 vaccination. HA-reactive B cells from the other infant maintained a more evenly distributed specificity. In year 2, class-switched HA-specific B cell IGHV somatic hypermutation (SHM) levels reached the average levels seen in adults. The HA-reactive plasma antibody repertoires of both infants comprised a relatively small number of antibody clonotypes, with one or two very abundant clonotypes. Thus, after the year 2 boost, both infants had overall B cell profiles that resembled those of adult controls. IMPORTANCE Influenza virus is a moving target for the immune system. Variants emerge that escape protection from antibodies elicited by a previously circulating variant ("antigenic drift"). The immune system usually responds to a drifted influenza virus by mutating existing antibodies rather than by producing entirely new ones. Thus, immune memory of the earliest influenza virus exposure has a major influence on later responses to infection or vaccination ("immune imprinting"). In the many studies of influenza immunity in adult subjects, imprinting has been from an early infection, since only in the past 2 decades have infants received influenza immunizations. The work reported in this paper is a pilot study of imprinting by the flu vaccine in two infants, who received the vaccine before experiencing an influenza virus infection. The results suggest that a quadrivalent (four-subtype) vaccine may provide an immune imprint less dominated by one subtype than does a monovalent infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Adult , Humans , Infant , Pilot Projects , Influenza B virus , Vaccination , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus
12.
Sci Immunol ; 7(74): eabo3425, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35536154

ABSTRACT

Neutralizing antibodies that recognize the SARS-CoV-2 spike glycoprotein are the principal host defense against viral invasion. Variants of SARS-CoV-2 bear mutations that allow escape from neutralization by many human antibodies, especially those in widely distributed ("public") classes. Identifying antibodies that neutralize these variants of concern and determining their prevalence are important goals for understanding immune protection. To determine the Delta and Omicron BA.1 variant specificity of B cell repertoires established by an initial Wuhan strain infection, we measured neutralization potencies of 73 antibodies from an unbiased survey of the early memory B cell response. Antibodies recognizing each of three previously defined epitopic regions on the spike receptor binding domain (RBD) varied in neutralization potency and variant-escape resistance. The ACE2 binding surface ("RBD-2") harbored the binding sites of neutralizing antibodies with the highest potency but with the greatest sensitivity to viral escape; two other epitopic regions on the RBD ("RBD-1" and "RBD-3") bound antibodies of more modest potency but greater breadth. The structures of several Fab:spike complexes that neutralized all five variants of concern tested, including one Fab each from the RBD-1, -2, and -3 clusters, illustrated the determinants of broad neutralization and showed that B cell repertoires can have specificities that avoid immune escape driven by public antibodies. The structure of the RBD-2 binding, broad neutralizer shows why it retains neutralizing activity for Omicron BA.1, unlike most others in the same public class. Our results correlate with real-world data on vaccine efficacy, which indicate mitigation of disease caused by Omicron BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/chemistry , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics
13.
J Anim Ecol ; 91(7): 1458-1470, 2022 07.
Article in English | MEDLINE | ID: mdl-35426953

ABSTRACT

In seasonal environments, fluctuating early-season weather conditions and short breeding windows limit reproductive opportunities such that breeding earlier or later than the optimum may be particularly costly. Given the risk of early-season energy limitations, time- and energy-based carry-over effects stemming from environmental conditions across the annual cycle may have pronounced consequences for breeding phenology and fitness. Generally, when and where environmental conditions are most influential are poorly understood, limiting our ability to predict the future of climate-sensitive populations. For an alpine-breeding, migratory population of horned lark Eremophila alpestris in northern British Columbia, Canada (54.8°N), we assessed how weather conditions across the annual cycle influenced clutch initiation date and offspring development. We also addressed how cross-seasonal effects on breeding parameters combine to influence reproductive fitness. With 12 years of breeding data and 3 years of migration data, we used a sliding window approach to identify points during the annual cycle when weather events most influenced breeding phenology and offspring development. Consequences for breeding success were assessed using nest survival simulations. Average clutch initiation date varied up to 11 days among years but did not advance from 2003 to 2019. Warmer temperatures at stopover and breeding sites advanced clutch initiation, but winter conditions had no effect. Sub-zero stopover temperatures carried over to prolong offspring development independent of clutch initiation date, potentially indicating energy-based carry-over effects acting on parental investment. Nest survival decreased with both later clutch initiation and prolonged offspring development such that females nesting earlier and fledging offspring at a younger age were up to 45% more likely to reproduce successfully. We demonstrate that stronger carry-over effects originated from environmental conditions closer to the breeding site in time and space, as well as the potential for energy-based mechanisms to link pre-breeding conditions to reproductive fitness. We also highlight the importance of extended stopovers for songbirds breeding in seasonal environments, particularly given that climatic conditions are becoming increasingly decoupled across stages of the annual cycle. Understanding the cross-seasonal mechanisms shaping breeding decisions in stochastic environments allows for more accurate predictions of population-level responses to climate change.


Les variations saisonnières de l'environnement, notamment due aux conditions climatiques changeantes en début de saison ainsi que la réduction de la période propice à l'accouplement contraint fortement les possibilités de reproduction. Dans ces conditions, s'accoupler avant ou après le moment optimal peut s'avérer particulièrement coûteux. Les effets de report (temporels et énergétiques) causés par ces variations environnementales peuvent avoir des conséquences notables sur la phénologie de la reproduction, et ultimement sur la valeur sélective des individus. Où et quand les effets des conditions environnementales sont le plus critiques reste encore méconnu, limitant notre capacité à prédire le futur des populations sensibles aux variations climatiques. Ici, nous avons évalué comment des conditions climatiques au cours de l'année influencent la date de ponte et le développement des oisillons dans une population migratrice d'Alouette hausse-col Eremophila alpestris se reproduisant en milieux alpin. Nous tirons profit de données issues de 12 ans de suivit de la reproduction et de 3 ans de suivit migratoire, et utilisons une approche dite de 'sliding window' pour identifier les moments du cycle annuel pour lequel le climat a eu le plus d'influence sur la phénologie de la reproduction et le développement des oisillons. La date moyenne de ponte s'avère variable d'une année à l'autre (certaine différence allant jusqu'à 11 jours), mais ne se décale pas sur la période de 2003 à 2019. Nos résultats montrent que des conditions climatiques plus chaudes lors des haltes migratoires ainsi que sur les sites de reproductions rendent la date de ponte plus précoces. Des températures négatives lors des haltes migratoires aussi ont pour conséquences un temps de développement des oisillons plus long, et ceci indépendamment de la date de ponte. Cela suggère des effets de report, notamment énergétique, affectant l'investissement des parents. Nos résultats montrent que la survie au nid diminue lorsque la date de ponte est plus tardive ou que le temps de développement des oisillons est rallongé. De cette manière, les femelles commençants la nidification plus tôt et pour qui les oisillons quittent le nid plus tôt ont 45% plus de chance de se reproduire avec succès. Nous démontrons que des conditions environnementales proche du site de reproduction (que ce soit dans le temps ou dans l'espace) cause un fort effet de report, et suggérons un possible mécanisme reliant les conditions climatiques pré-reproductives au succès reproducteur. De plus, nous mettons en lumière l'importance des haltes migratoires prolongées pour la reproduction des passereaux en environnement saisonnier, particulièrement du fait que les conditions climatiques sont de plus en plus découplées au cours des les étapes du cycle annuel. Une meilleure compréhension des mécanismes inter-saisonniers influençant les décisions de reproduction en environnement stochastique permettrait de mieux prédire les réponses des populations aux changements climatiques.


Subject(s)
Songbirds , Animal Migration , Animals , British Columbia , Climate Change , Female , Reproduction/physiology , Seasons , Songbirds/physiology , Weather
14.
J Biophotonics ; 15(2): e202100198, 2022 02.
Article in English | MEDLINE | ID: mdl-34837331

ABSTRACT

Up to 70% of ovarian cancer patients are diagnosed with advanced-stage disease and the degree of cytoreduction is an important survival prognostic factor. The aim of this study was to evaluate if Raman spectroscopy could detect cancer from different organs within the abdominopelvic region, including the ovaries. A Raman spectroscopy probe was used to interrogate specimens from a cohort of nine patients undergoing cytoreductive surgery, including four ovarian cancer patients and three patients with endometrial cancer. A feature-selection algorithm was developed to determine which spectral bands contributed to cancer detection and a machine-learning model was trained. The model could detect cancer using only eight spectral bands. The receiver-operating-characteristic curve had an area-under-the-curve of 0.96, corresponding to an accuracy, a sensitivity and a specificity of 90%, 93% and 88%, respectively. These results provide evidence multispectral Raman spectroscopy could be developed to detect ovarian cancer intraoperatively.


Subject(s)
Endometrial Neoplasms , Ovarian Neoplasms , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/surgery , Female , Humans , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/surgery , ROC Curve , Spectrum Analysis, Raman/methods
15.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34332650

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

16.
ACS Infect Dis ; 7(9): 2591-2595, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34437808

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease (COVID-19), is an ideal target for pharmaceutical inhibition. Mpro is conserved among coronaviruses and distinct from human proteases. Viral replication depends on the cleavage of the viral polyprotein at multiple sites. We present crystal structures of SARS-CoV-2 Mpro bound to two viral substrate peptides. The structures show how Mpro recognizes distinct substrates and how subtle changes in substrate accommodation can drive large changes in catalytic efficiency. One peptide, constituting the junction between viral nonstructural proteins 8 and 9 (nsp8/9), has P1' and P2' residues that are unique among the SARS-CoV-2 Mpro cleavage sites but conserved among homologous junctions in coronaviruses. Mpro cleaves nsp8/9 inefficiently, and amino acid substitutions at P1' or P2' can enhance catalysis. Visualization of Mpro with intact substrates provides new templates for antiviral drug design and suggests that the coronavirus lifecycle selects for finely tuned substrate-dependent catalytic parameters.


Subject(s)
COVID-19 , Coronavirus 3C Proteases/metabolism , SARS-CoV-2 , Antiviral Agents , Humans , Peptide Hydrolases , Viral Nonstructural Proteins
17.
Cancers (Basel) ; 13(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298618

ABSTRACT

In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.

18.
bioRxiv ; 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33758863

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.

19.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679765

ABSTRACT

The implications of the epithelial-mesenchymal transition (EMT) mechanisms in the initiation and progression of epithelial ovarian cancer (EOC) remain poorly understood. We have previously shown that suppression of the antigen receptor LY75 directs mesenchymal-epithelial transition (MET) in EOC cell lines with the mesenchymal phenotype, associated with the loss of Wnt/ß-catenin signaling activity. In the present study, we used the LY75-mediated modulation of EMT in EOC cells as a model in order to investigate in vivo the specific role of EOC cells, with an epithelial (E), mesenchymal (M) or mixed epithelial plus mesenchymal (E+M) phenotype, in EOC initiation, dissemination and treatment response, following intra-bursal (IB) injections of SKOV3-M (control), SKOV3-E (Ly75KD) and a mixed population of SKOV3-E+M cells, into severe combined immunodeficiency (SCID) mice. We found that the IB-injected SKOV3-E cells displayed considerably higher metastatic potential and resistance to treatment as compared to the SKOV3-M cells, due to the acquisition of a Ly75KD-mediated hybrid phenotype and stemness characteristics. We also confirmed in vivo that the LY75 depletion directs suppression of the Wnt/ß-catenin pathway in EOC cells, suggestive of a protective role of this pathway in EOC etiology. Moreover, our data raise concerns regarding the use of LY75-targeted vaccines for dendritic-cell EOC immunotherapy, due to the possible occurrence of undesirable side effects.


Subject(s)
Antigens, CD/genetics , Carcinogenesis/genetics , Carcinoma, Ovarian Epithelial/genetics , Gene Expression Regulation, Neoplastic , Lectins, C-Type/genetics , Minor Histocompatibility Antigens/genetics , Ovarian Neoplasms/genetics , Receptors, Cell Surface/genetics , Animals , Antineoplastic Agents/therapeutic use , Carboplatin/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, SCID , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasms, Experimental , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology
20.
Commun Biol ; 3(1): 254, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444806

ABSTRACT

We have demonstrated that microtubule destabilizing agents (MDAs) can sensitize tumors to oncolytic vesicular stomatitis virus (VSVΔ51) in various preclinical models of cancer. The clinically approved T-DM1 (Kadcyla®) is an antibody-drug conjugate consisting of HER2-targeting trastuzumab linked to the potent MDA and maytansine derivative DM1. We reveal that combining T-DM1 with VSVΔ51 leads to increased viral spread and tumor killing in trastuzumab-binding, VSVΔ51-resistant cancer cells. In vivo, co-treatment of VSVΔ51 and T-DM1 increased overall survival in HER2-overexpressing, but trastuzumab-refractory, JIMT1 human breast cancer xenografts compared to monotherapies. Furthermore, viral spread in cultured HER2+ human ovarian cancer patient-derived ascites samples was enhanced by the combination of VSVΔ51 and T-DM1. Our data using the clinically approved Kadcyla® in combination with VSVΔ51 demonstrates proof of concept that targeted delivery of a viral-sensitizing molecule using an antibody-drug conjugate can enhance oncolytic virus activity and provides rationale for translation of this approach.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/therapy , Drug Synergism , Oncolytic Virotherapy/methods , Rhabdoviridae/genetics , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Combined Modality Therapy , Female , Humans , Maytansine/administration & dosage , Mice , Mice, Nude , Trastuzumab/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...