Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 26(5): 745-756, 2024 May.
Article in English | MEDLINE | ID: mdl-38641660

ABSTRACT

Imaging-based methods are widely used for studying the subcellular localization of proteins in living cells. While routine for individual proteins, global monitoring of protein dynamics following perturbation typically relies on arrayed panels of fluorescently tagged cell lines, limiting throughput and scalability. Here, we describe a strategy that combines high-throughput microscopy, computer vision and machine learning to detect perturbation-induced changes in multicolour tagged visual proteomics cell (vpCell) pools. We use genome-wide and cancer-focused intron-targeting sgRNA libraries to generate vpCell pools and a large, arrayed collection of clones each expressing two different endogenously tagged fluorescent proteins. Individual clones can be identified in vpCell pools by image analysis using the localization patterns and expression level of the tagged proteins as visual barcodes, enabling simultaneous live-cell monitoring of large sets of proteins. To demonstrate broad applicability and scale, we test the effects of antiproliferative compounds on a pool with cancer-related proteins, on which we identify widespread protein localization changes and new inhibitors of the nuclear import/export machinery. The time-resolved characterization of changes in subcellular localization and abundance of proteins upon perturbation in a pooled format highlights the power of the vpCell approach for drug discovery and mechanism-of-action studies.


Subject(s)
Proteomics , Humans , Proteomics/methods , Machine Learning , Microscopy, Fluorescence/methods , Cell Line, Tumor
2.
ACS Chem Biol ; 18(12): 2464-2473, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098458

ABSTRACT

Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins. Here we develop a high-throughput workflow for MGD discovery that also reaches the nonessential proteome. This workflow begins with the rapid synthesis of a compound library by sulfur(VI) fluoride exchange chemistry coupled to a morphological profiling assay in isogenic cell lines that vary in levels of the E3 ligase CRBN. By comparing the morphological changes induced by compound treatment across the isogenic cell lines, we were able to identify FL2-14 as a CRBN-dependent MGD targeting the nonessential protein GSPT2. We envision that this workflow would contribute to the discovery and characterization of MGDs that target a wider range of proteins.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitin/metabolism
3.
Bioorg Med Chem ; 93: 117459, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37659217

ABSTRACT

A facile and efficient approach utilizing copper-mediated cross-coupling reaction of N-boc-3-indolylsulfoximines with aryl iodides was developed to synthesize a diverse range of N-arylated indolylsulfoximines 11a-m in excellent yields (up to 91%). The key precursors, free NH sulfoximines 9 were readily prepared by the treatment of N-boc-3-methylthioindoles 8 with a combination of IBD and ammonium carbamate. Under similar conditions NH-free indolylsulfoximine 9a was successfully prepared in gram-scale quantities. The reaction is highly chemoselective and tolerant of a wide range of functional groups. The process is environmentally friendly and is amenable to scale-up. Among the prepared N-arylated indolylsulfoximines 11a-m, compounds 11i-j (2.68-2.76 µM), 11f-g (1.9-3.7 µM) and 11k (1.28 µM) showed potent and selective cytotoxicity against 22Rv1, C4-2 and MCF7 cells, respectively. Indolylsulfoximine derivative 11l displayed a broad spectrum of activity (1.7-8.2 µM) against the tested cancer cell lines. These compounds were found to be non-cytotoxic to normal HEK293 cells, indicating their potential selectivity for cancer cells. We analysed the impact of 11l on various cellular assays to uncover its mechanism of action. Cellular assay shows that 11l increases the endogenous level of ROS, leading to the increased level of p-53 and c-jun inducing apoptosis. 11l also induced mitochondrial dysfunction, further promoting apoptotic pathways. Besides, 11l also restricts cell invasiveness, indicating that it could serve as an effective anti-metastatic agent. As oxidative stress severe F actin causing tubulin depolymerization, we examined the impact of 11l on tubulin dynamics. Accordingly, 11l treatment decreased the levels of polymerized tubulin in 22Rv1 and C4-2 cells. Although future studies are needed to determine their exact molecular target(s), our data shows that N-aryl indolylsulfoximines could serve as effective anti-cancer agents.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , HEK293 Cells , Antineoplastic Agents/pharmacology , Oxidative Stress , Actin Cytoskeleton
4.
Chem Sci ; 14(37): 10140-10146, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37772102

ABSTRACT

Due to the well known reactivity of C(O)-N functionalities towards canonical C1-homologating agents (e.g. carbenoids, diazomethane, ylides), resulting in the extrusion of the N-centered fragment en route to carbonyl compounds, formal C1-insertions within N-O bonds still remain obscure. Herein, we document the homologative transformation of N-methyl-N-oxyamides - with high tolerance for diverse O-substituents - into N-acyl-N,O-acetals. Under controlled basic conditions, the N-methyl group of the same starting materials acts as a competent precursor of the methylene synthon required for the homologation. The logic is levered on the formation of an electrophilic iminium ion (via N-O heterolysis) susceptible to nucleophilic attack by the alkoxide previously expulsed. The procedure documents genuine chemocontrol and flexibility, as judged by the diversity of substituents placed on both amide and nitrogen linchpins. The mechanistic rationale was validated through experiments conducted on D-labeled materials which unambiguously attributed the origin of the methylene fragment to the N-methyl group of the starting compounds.

5.
Chem Commun (Camb) ; 59(74): 11065-11068, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37644820

ABSTRACT

α-Substituted methylsulfinamide are prepared through the homologation of electrophilic N-sulfinylamines with Li-CHXY reagents. The transformation takes place under full chemocontrol and exhibits good flexibility for preparing both N-aryl and N-alkyl analogues. Various sensitive functionalities can be accommodated on the starting materials, thus documenting a wide reaction scope.

6.
Nat Commun ; 14(1): 4504, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587144

ABSTRACT

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.


Subject(s)
Aptamers, Nucleotide , SMN Complex Proteins , Biomolecular Condensates , Carbocyanines , Nuclear Speckles , Tudor Domain
7.
Immunology ; 165(1): 122-140, 2022 01.
Article in English | MEDLINE | ID: mdl-34549818

ABSTRACT

Haemoglobin (Hb) has well-documented inflammatory effects and is normally efficiently scavenged; clearance mechanisms can be overwhelmed during erythrocyte lysis. Whether Hb is preferentially inflammatory in lupus and triggers broad anti-self responses was assessed. Peripheral blood mononuclear cells (PBMCs) derived from SLE patients secreted higher levels of lupus-associated inflammatory cytokines when incubated with human Hb than did PBMCs derived from healthy donors, an effect negated by haptoglobin. Ferric murine Hb triggered the preferential release of lupus-associated cytokines from splenocytes, B cells, CD4 T cells, CD8 T cells and plasmacytoid dendritic cells isolated from ageing, lupus-prone NZM2410 mice, and also had mitogenic effects on B cells. Pull-downs, followed by mass spectrometry, revealed interactions of Hb with several lupus-associated autoantigens; co-incubation of ferric Hb with apoptotic blebs (structures that contain packaged autoantigens) revealed synergies-in terms of cytokine release and autoantibody production in vitro-that were also restricted to the lupus genotype. Murine ferric Hb activated multiple signalling pathways and, in combination with apoptotic blebs, preferentially triggered MAP kinase signalling specifically in splenocytes isolated from lupus-prone mice. Infusion of murine ferric Hb into lupus-prone mice led to enhanced release of lupus-associated cytokines, the generation of a spectrum of autoantibodies and enhanced-onset glomerulosclerosis. Given that the biased recognition of ferric Hb in a lupus milieu, possibly in concert with lupus-associated autoantigens, triggers inflammatory responses and the generation of lupus-associated cytokines, and also stimulates the generation of potentially pathogenic lupus-associated autoantibodies, neutralization of Hb could have beneficial effects.


Subject(s)
Autoantigens/immunology , Hemoglobins/metabolism , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/etiology , Lupus Nephritis/metabolism , Animals , Apoptosis/genetics , Apoptosis/immunology , Autoantibodies/immunology , Biomarkers , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Humans , Imidazoles/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/immunology , Lupus Nephritis/pathology , Lymphocyte Activation/immunology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mice , Protein Binding , Signal Transduction , Spleen/immunology , Spleen/metabolism
8.
Angew Chem Int Ed Engl ; 60(47): 24854-24858, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34534400

ABSTRACT

A formal CH2 -CH2 homologation conducted with C1 carbenoids on a carbon electrophile for the obtainment of a four-membered cycle is reported. The logic proposes the consecutive delivery of two single nucleophilic CH2 units to an isothiocyanate-as competent electrophilic partner-resulting in the assembling of a rare imino-thietane cluster. The single synthetic operation procedure documents genuine chemocontrol, as indicated by the tolerance to various reactive elements decorating the starting materials. Significantly, the double homologation protocol is accomplished directly on a carbon electrophile, thus not requiring the installation of heteroatom-centered manifolds (e.g. boron).

9.
Front Plant Sci ; 12: 714730, 2021.
Article in English | MEDLINE | ID: mdl-34512695

ABSTRACT

Environmental concerns related to synthetic pesticides and the emphasis on the adoption of an integrated pest management concept as a cardinal principle have strengthened the focus of global research and development on botanical pesticides. A scientific understanding of the mode of action of biomolecules over a range of pests is key to the successful development of biopesticides. The present investigation focuses on the in silico protein-ligand interactions of allyl isothiocyanate (AITC), a major constituent of black mustard (Brassica nigra) essential oil (MEO) against two pests, namely, Meloidogyne incognita (Mi) and Fusarium oxysporum f. sp. lycopersici (Fol), that cause severe yield losses in agricultural crops, especially in vegetables. The in vitro bioassay results of MEO against Mi exhibited an exposure time dependent on the lethal concentration causing 50% mortality (LC50) values of 47.7, 30.3, and 20.4 µg ml-1 at 24, 48, and 72 h of exposure, respectively. The study revealed short-term nematostatic activity at lower concentrations, with nematicidal activity at higher concentrations upon prolonged exposure. Black mustard essential oil displayed excellent in vitro Fol mycelial growth inhibition, with an effective concentration to cause 50% inhibition (EC50) value of 6.42 µg ml-1. In order to decipher the mechanism of action of MEO, its major component, AITC (87.6%), which was identified by gas chromatography-mass spectrometry (GC-MS), was subjected to in silico docking and simulation studies against seven and eight putative target proteins of Mi and Fol, respectively. Allyl isothiocyanate exhibited the highest binding affinity with the binding sites of acetyl cholinesterase (AChE), followed by odorant response gene-1 (ODR1) and neuropeptide G-protein coupled receptor (nGPCR) in Mi, suggesting the possible suppression of neurotransmission and chemosensing functions. Among the target proteins of Fol, AITC was the most effective protein in blocking chitin synthase (CS), followed by 2,3-dihydroxy benzoic acid decarboxylase (6m53) and trypsinase (1try), thus inferring these as the principal molecular targets of fungal growth. Taken together, the study establishes the potential of MEO as a novel biopesticide lead, which will be utilized further to manage the Mi-Fol disease complex.

10.
Mini Rev Med Chem ; 21(16): 2337-2346, 2021.
Article in English | MEDLINE | ID: mdl-33749563

ABSTRACT

Fungi are recognized as key pathogens in immunocompromised patients. The invasive infection always remains a problem for clinicians due to high morbidity and mortality. The treatments of fungal infections are hampered by conventional drugs, which are associated with resistance. Drug resistance has become an important problem in a variety of infectious diseases. The rise in the incidence of fungal infections and drug resistance has intensified the need for alternative therapies that affect a new target. This new target must be a growth essential gene product like the stress pathway. It has been found that stress pathways can be a potential target in opportunistic fungal infection, which played an important role in the virulence of pathogens. It was helpful in protection from host defense, normal fungal growth, and antifungal drug resistance. The disruption of the pathway using alternative strategies (chemosensitization and photo-dynamics therapy) can be a novel approach in fighting fungal infections and for drug design.


Subject(s)
Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fungi/drug effects , Mycoses/drug therapy , Mycoses/microbiology , Animals , Drug Design , Drug Resistance, Fungal/drug effects , Humans , Virulence/drug effects
11.
Bioorg Med Chem Lett ; 37: 127842, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556575

ABSTRACT

A series of novel indolyl-α-keto-1,3,4-oxadiazole derivatives have been synthesized by employing molecular iodine-mediated oxidative cyclization of acylhydrazones. In vitro anti cell proliferation activity of these derivatives against various cancer cells lines such as human lymphoblast (U937), leukemia (Jurkat & SB) and human breast (BT474) was investigated. Among the synthesized indolyl-α-keto-1,3,4-oxadiazoles 19a-p, only one compound (19e) exhibited significant antiproliferative activity against a panel of cell lines. The compound 19e with 3,4,5-trimethoxyphenyl motif, endowed strong cytotoxicity against U937, Jurkat, BT474 and SB cancer cells with IC50 values of 7.1, 3.1, 4.1, and 0.8 µM, respectively. Molecular docking studies suggested a potential binding mode for 19e in the colchicine binding site of tubulin. When tested for in vitro tubulin polymerizaton, 19e inhibited tubulin polymezations (IC50 = 10.66 µM) and induced apoptosis through caspase 3/7 activation. Further, the derivative 19e did not cause necrosis when measured using lactate dehydrogenase assay.


Subject(s)
Antineoplastic Agents/pharmacology , Oxadiazoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
12.
Org Biomol Chem ; 19(5): 1109-1114, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33434249

ABSTRACT

Chemoselective copper-catalyzed synthesis of diverse N-arylindole-3-carboxamides, ß-oxo amides and N-arylindole-3-carbonitriles from readily accessible indole-3-carbonitriles, α-cyano ketones and diaryliodonium salts has been developed. Diverse N-arylindole-3-carboxamides and ß-oxo amides were successfully achieved in high yields under copper-catalyzed neutral reaction conditions, and the addition of an organic base (DIPEA) resulted in a completely different selectivity pattern to produce N-arylindole-3-carbonitriles. Moreover, the importance of the developed methodology was realized by the synthesis of indoloquinolones and N-((1H-indol-3-yl)methyl)aniline and by a single-step gram-scale synthesis of the naturally occurring cephalandole A analogue.

13.
Org Lett ; 22(4): 1345-1349, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32004004

ABSTRACT

The commercially available fluoroiodomethane represents a valuable and effective electrophilic source for transferring the CH2F unit to a series of heteroatom-centered nucleophiles under mild basic conditions. The excellent manipulability offered by its liquid physical state (bp 53.4 °C) enables practical and straightforward one-step nucleophilic substitutions to retain the chiral information embodied, thus allowing it to overcome de facto the requirement for fluoromethylating agents with no immediate access. The high-yielding methodology was successfully applied to a variety of nucleophiles including a series of drugs currently in the market.

14.
Front Plant Sci ; 11: 614143, 2020.
Article in English | MEDLINE | ID: mdl-33488658

ABSTRACT

Nematicidal potential of essential oils (EOs) has been widely reported. Terpenoids present in most of the essential oils have been reported responsible for their bioactivity though very less is known about their modes of action. In the present study, an in vitro screening of nine Eos, namely, Citrus sinensis (OEO), Myrtus communis (MTEO), Eucalyptus citriodora (CEO), Melaleuca alternifolia (TEO), Acorus calamus (AEO), Commiphora myrrha (MREO), Cymbopogon nardus (CNEO), Artemisia absinthium (WEO), and Pogostemon cablin (PEO) against Meloidogyne incognita revealed OEO, CNEO, and TEO as most effective with LC50 39.37, 43.22, and 76.28 µg ml-1 respectively. EOs had varying compositions of mono- and sesquiterpenes determined by gas chromatography-mass spectrometry (GC-MS) analysis. The in silico molecular interactions screening of major EO constituents and the seven selected target proteins of the nematode indicated highest binding affinity of geraniol-ODR1 (odorant response gene 1) complex (ΔG = -36.9 kcal mol-1), due to extensive H-bonding, hydrophobic and π-alkyl interactions. The relative binding affinity followed the order: geraniol-ODR1 > ß-terpineol-ODR1 > citronellal-ODR1 > l-limonene-ODR1 > γ-terpinene-ODR1. Taken together, the cumulative in vitro and computational bioefficacy analysis related to the chemoprofiles of EOs provides useful leads on harnessing the potential of EOs as bionematicides. The insight on biochemical ligand-target protein interactions described in the present work will be helpful in logical selection of biomolecules and essential oils for development of practically viable bionematicidal products.

15.
ACS Omega ; 4(2): 4259-4268, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459633

ABSTRACT

We report a selective and sensitive nanosensor probe based on polyethylenimine (PEI)-capped downconverting nanophosphors ß-NaYF4:Gd3+,Tb3+@PEI for the detection of 2,4,6-trinitrotoluene (TNT), both in water and buffer media. These downconverting phosphors were synthesized via a hydrothermal route and are known to show excellent chemical, thermal, and photostability. They emit sharp emission peaks centered at ∼488, 544, 584, and 619 nm, among which the peak at ∼544 nm was remarkably quenched (∼90%) by the addition of TNT without giving any new emission peak. The sensing mechanism is based on the formation of a Meisenheimer complex between the electron-rich amine-functionalized ß-NaYF4:Gd3+,Tb3+ nanophosphors and electron-deficient TNT molecule, which was prominently visualized by the change in the color of the solution from whitish to brownish yellow, enabling visual detection, followed by luminescence resonance energy transfer between the nanophosphors and the complex. A linear range for TNT detection was obtained from 0.1 to 300 µM with a limit of detection as low as 119.9 nM. This method displayed excellent selectivity toward TNT over other nitroaromatic compounds, which had no influence on the detection. Moreover, various other classes of analytes, viz., amino acids, pesticides, and sugars, did not quench the luminescence intensity of the nanophosphors. This developed nanosensor probe possesses high, stable fluorescence brightness and capability for the selective and sensitive on-site recognition of TNT molecules in aqueous media, avoiding complicated strategies and instruments. Thus, this work promises to pave ways to many applications in the detection of ultratrace analytes.

16.
Article in English | MEDLINE | ID: mdl-30574119

ABSTRACT

Immunopathological outcomes in Systemic Lupus Erythematosus (SLE; or lupus) are believed to be autoantibody-mediated. Conditions which promote a Th2 skew (such as pregnancy) should encourage antibody production, worsening antibody-mediated diseases while ameliorating Th1/Th17-mediated diseases. Although an increased propensity toward autoreactivity can be observed in pregnant lupus patients and in pregnant lupus-prone mice, whether a unique human pregnancy-specific factor can contribute to such effects is unknown. This study assessed whether human chorionic gonadotropin (hCG, a pregnancy-specific hormone of diverse function) at physiological concentrations could mediate stimulatory influences on immune parameters in non-pregnant, lupus-prone mice, in light of the hormone's ameliorating effects on Th1-mediated autoimmunity in murine models. Results demonstrate that administration of hCG heightened global autoreactivity in such mice; antibodies to dsDNA, RNP68, Protein S, Protein C, ß2-glycoprotein 1, and several phospholipids were enhanced, and hormone administration had adverse effects on animal survival. Specifically in splenic cell cultures containing cells derived from lupus-prone mice, hCG demonstrated synergistic effects with TLR ligands (up-modulation of costimulatory markers on B cells) as well as with TCR stimuli (enhanced proliferative responses, enhanced levels of cytokines, and the phosphorylation of p38). In both instances, enhanced synthesis of lupus-associated cytokines was observed, in addition to the heightened generation of autoantibodies reactive toward apoptotic blebs. These results suggest that selective transducive, proliferative, and differentiative effects of hCG on adaptive immune cells may drive autoreactive responses in a lupus environment, and may also potentially provide insights into the association between the presence of higher hCG levels (or the administration of hCG) with the presence (or appearance) of humoral autoimmunity.

17.
ACS Omega ; 3(2): 1834-1849, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458496

ABSTRACT

Dimension and shape tunable architectures of inorganic crystals are of extreme interest because of morphology-dependent modulation of the properties of the materials. Herein, for the first time, we present a novel impurity-driven strategy where we studied the influence of in situ incorporation of graphene quantum dots (GQDs) on the growth of ß-NaYF4:Gd3+/Tb3+ phosphor crystals via a hydrothermal route. The GQDs function as a nucleation site and by changing the concentration of GQDs, the morphology of ß-NaYF4:Gd3+/Tb3+ phosphors was changed from rod to flowerlike structure to disklike structure, without phase transformation. The influence of size and functionalization of GQDs on the size and shape of phosphor crystals were also systematically studied and discussed. Plausible mechanisms of formation of multiform morphologies are proposed based on the heterogeneous nucleation and growth. Most interestingly, the experimental results indicate that the photoluminescence properties of ß-NaYF4:Gd3+/Tb3+ phosphor crystals are strongly dependent on the crystallite size and morphology. This study would be suggestive for the precisely controlled growth of inorganic crystals; consequently, it will open new avenues and thus may possess potential applications in the field of materials and biological sciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...