Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell ; 186(5): 975-986.e13, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868215

ABSTRACT

Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Å cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.


Subject(s)
Archaea , Biological Evolution , Cryoelectron Microscopy , Engineering , Reinforcement, Psychology
2.
Sci Adv ; 9(8): eadd9186, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812320

ABSTRACT

The ability to physically manipulate specific cells is critical for the fields of biomedicine, synthetic biology, and living materials. Ultrasound has the ability to manipulate cells with high spatiotemporal precision via acoustic radiation force (ARF). However, because most cells have similar acoustic properties, this capability is disconnected from cellular genetic programs. Here, we show that gas vesicles (GVs)-a unique class of gas-filled protein nanostructures-can serve as genetically encodable actuators for selective acoustic manipulation. Because of their lower density and higher compressibility relative to water, GVs experience strong ARF with opposite polarity to most other materials. When expressed inside cells, GVs invert the cells' acoustic contrast and amplify the magnitude of their ARF, allowing the cells to be selectively manipulated with sound waves based on their genotype. GVs provide a direct link between gene expression and acoustomechanical actuation, opening a paradigm for selective cellular control in a broad range of contexts.


Subject(s)
Acoustics , Proteins , Sound , Ultrasonography , Mechanical Phenomena
3.
Nat Nanotechnol ; 16(12): 1403-1412, 2021 12.
Article in English | MEDLINE | ID: mdl-34580468

ABSTRACT

Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.


Subject(s)
Acoustics , Gases/chemistry , Genetic Techniques , Microbubbles , Animals , Biomechanical Phenomena , Cell Line, Tumor , Female , Humans , Immunotherapy , Mice, Inbred BALB C , Optical Imaging , Probiotics/pharmacology , Receptors, Cell Surface/metabolism , Ultrasonography
4.
Neuron ; 109(9): 1554-1566.e4, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33756104

ABSTRACT

New technologies are key to understanding the dynamic activity of neural circuits and systems in the brain. Here, we show that a minimally invasive approach based on ultrasound can be used to detect the neural correlates of movement planning, including directions and effectors. While non-human primates (NHPs) performed memory-guided movements, we used functional ultrasound (fUS) neuroimaging to record changes in cerebral blood volume with 100 µm resolution. We recorded from outside the dura above the posterior parietal cortex, a brain area important for spatial perception, multisensory integration, and movement planning. We then used fUS signals from the delay period before movement to decode the animals' intended direction and effector. Single-trial decoding is a prerequisite to brain-machine interfaces, a key application that could benefit from this technology. These results are a critical step in the development of neuro-recording and brain interface tools that are less invasive, high resolution, and scalable.


Subject(s)
Intention , Neuroimaging/methods , Parietal Lobe/physiology , Psychomotor Performance/physiology , Ultrasonography/methods , Animals , Brain Mapping/methods , Brain-Computer Interfaces , Macaca mulatta , Male , Movement , Neuroimaging/instrumentation , Ultrasonography/instrumentation
5.
Neuroscience ; 474: 122-133, 2021 10 15.
Article in English | MEDLINE | ID: mdl-33727074

ABSTRACT

Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.


Subject(s)
Acoustics , Contrast Media , Brain/diagnostic imaging , Humans , Ultrasonography
6.
ACS Nano ; 14(9): 12210-12221, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32902951

ABSTRACT

Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.


Subject(s)
Lysosomes , Phagocytosis , Animals , Contrast Media , Liver/diagnostic imaging , Ultrasonography
7.
Nat Chem Biol ; 16(9): 1035, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32704181

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Chem Biol ; 16(9): 988-996, 2020 09.
Article in English | MEDLINE | ID: mdl-32661379

ABSTRACT

Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first genetically encodable acoustic biosensors-molecules that 'light up' in ultrasound imaging in response to protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called gas vesicles, which we engineered to produce nonlinear ultrasound signals in response to the activity of three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract.


Subject(s)
Acoustics/instrumentation , Biosensing Techniques/instrumentation , Enzymes/metabolism , Gastrointestinal Tract/enzymology , Ultrasonography/methods , Animals , Bacteria/enzymology , Bacteria/genetics , Biosensing Techniques/methods , Calpain/analysis , Calpain/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Endopeptidases/analysis , Endopeptidases/metabolism , Enzymes/analysis , Equipment Design , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Male , Mice, Inbred C57BL , Nanostructures/chemistry , Potyvirus/enzymology , Probiotics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal-To-Noise Ratio , Ultrasonography/instrumentation
9.
Neuroimage ; 209: 116467, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31846757

ABSTRACT

Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.


Subject(s)
Brain/diagnostic imaging , Contrast Media , Functional Neuroimaging/methods , Hemodynamics , Image Enhancement/methods , Microbubbles , Ultrasonography, Doppler, Transcranial/methods , Animals , Contrast Media/administration & dosage , Functional Neuroimaging/standards , Image Enhancement/standards , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Reproducibility of Results , Ultrasonography, Doppler, Transcranial/standards
10.
Sci Rep ; 8(1): 16436, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401816

ABSTRACT

Patient mortality at one year reaches 90% after out-of-hospital cardiac arrest and resuscitation. Temperature management is one of the main strategies proposed to improve patient outcome after resuscitation and preclinical studies have shown neuroprotective effects when hypothermia is achieved rapidly, although the underlying mechanisms have not yet been elucidated. State-of-the-art brain imaging technologies can bring new insights into the early cerebral events taking place post cardiac arrest and resuscitation. In this paper, we characterized cerebral hemodynamics in a post-cardiac arrest rabbit model using functional ultrasound imaging. Ultrasound datasets were processed to map the dynamic changes in cerebral blood flow and cerebral vascular resistivity with a 10 second repetition rate while animals underwent cardiac arrest and a cardiopulmonary resuscitation. We report that a severe transient hyperemia takes place in the brain within the first twenty minutes post resuscitation, emphasizing the need for fast post-cardiac arrest care. Furthermore, we observed that this early hyperemic event is not spatially homogeneous and that maximal cerebral hyperemia happens in the hippocampus. Finally, we show that rapid cooling induced by total liquid ventilation reduces early cerebral hyperemia, which could explain the improved neurological outcome reported in preclinical studies.


Subject(s)
Cardiopulmonary Resuscitation/methods , Cerebrovascular Circulation , Disease Models, Animal , Heart Arrest/diagnostic imaging , Hemodynamics , Hypothermia, Induced/methods , Ultrasonography/methods , Animals , Heart Arrest/pathology , Heart Arrest/therapy , Male , Rabbits
11.
Article in English | MEDLINE | ID: mdl-30418874

ABSTRACT

The heart's supply of oxygen and nutrients relies on the coronary vasculature, which branches from millimeter-sized arteries down to micrometer-sized capillaries. To date, imaging technologies can only detect large epicardial coronary vessels, whereas the intramural coronary vasculature remains invisible due to cardiac motion. We recently introduced coronary ultrafast Doppler angiography, a noninvasive vascular imaging technology based on ultrafast ultrasound that enables the visualization of epicardial and intramural coronary vasculature in humans. In this letter we describe, using an open-chest swine data set, the adaptive spatiotemporal filtering method that was developed for the detection of slow blood flows embedded in rapid myocardial motion.


Subject(s)
Angiography/methods , Coronary Vessels/diagnostic imaging , Echocardiography, Doppler/methods , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Algorithms , Animals , Female , Swine
12.
Annu Rev Chem Biomol Eng ; 9: 229-252, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29579400

ABSTRACT

Visualizing and modulating molecular and cellular processes occurring deep within living organisms is fundamental to our study of basic biology and disease. Currently, the most sophisticated tools available to dynamically monitor and control cellular events rely on light-responsive proteins, which are difficult to use outside of optically transparent model systems, cultured cells, or surgically accessed regions owing to strong scattering of light by biological tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that enables the observation and perturbation of internal anatomy and physiology but has historically had limited ability to monitor and control specific cellular processes. Recent advances are beginning to address this limitation through the development of biomolecular tools that allow ultrasound to connect directly to cellular functions such as gene expression. Driven by the discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent field of biomolecular ultrasound carries a wave of exciting opportunities.


Subject(s)
Ultrasonics/methods , Animals , Biological Transport , Brain/diagnostic imaging , Contrast Media/chemistry , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Photoacoustic Techniques , Proteins/genetics , Proteins/metabolism
13.
Phys Rev X ; 8(4)2018.
Article in English | MEDLINE | ID: mdl-34040818

ABSTRACT

The basic physics of sound waves enables ultrasound to visualize biological tissues with high spatial and temporal resolution. Recently, this capability was enhanced with the development of acoustic biomolecules - proteins with physical properties enabling them to scatter sound. The expression of these unique air-filled proteins, known as gas vesicles (GVs), in cells allows ultrasound to image cellular functions such as gene expression in vivo, providing ultrasound with its analog of optical fluorescent proteins. Acoustical methods for the in vivo detection of GVs are now required to maximize the impact of this technology in biology and medicine. We previously engineered GVs exhibiting a nonlinear scattering behavior in response to acoustic pressures above 300 kPa, and showed that amplitude-modulated (AM) ultrasound pulse sequences that both excite the linear and nonlinear GV scattering regimes were highly effective at distinguishing GVs from linear scatterers like soft biological tissues. Unfortunately, the in vivo specificity of AM ultrasound imaging is systematically compromised by the nonlinearity added by the GVs to propagating waves, resulting in strong image artifacts from linear scatterers downstream of GV inclusions. To address this issue, we present an imaging paradigm, cross-amplitude modulation (xAM), which relies on cross-propagating plane-wave transmissions of finite aperture X-waves to achieve quasi artifact-free in vivo imaging of GVs. The xAM method derives from counter-propagating wave interaction theory which predicts that, in media exhibiting quadratic elastic nonlinearity like biological tissue, the nonlinear interaction of counter-propagating acoustic waves is inefficient. By transmitting cross-propagating plane-waves, we minimize cumulative nonlinear interaction effects due to collinear wave propagation, while generating a transient wave-amplitude modulation at the two plane-waves' intersection. We show in both simulations and experiments that residual xAM nonlinearity due to wave propagation decreases as the plane-wave cross-propagation angle increases. We demonstrate in tissue-mimicking phantoms that imaging artifacts distal to GV inclusions decrease as the plane-wave cross-propagation angle opens, nearing complete extinction at angles above 16.5 degrees. Finally, we demonstrate that xAM enables highly specific in vivo imaging of GVs located in the gastrointestinal tract, a target of prime interest for future cellular imaging. These results advance the physical facet of the emerging field of biomolecular ultrasound, and are also relevant to synthetic ultrasound contrast agents.

14.
JACC Cardiovasc Imaging ; 11(6): 798-808, 2018 06.
Article in English | MEDLINE | ID: mdl-28823737

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the potential of coronary ultrafast Doppler angiography (CUDA), a novel vascular imaging technique based on ultrafast ultrasound, to image noninvasively with high sensitivity the intramyocardial coronary vasculature and quantify the coronary blood flow dynamics. BACKGROUND: Noninvasive coronary imaging techniques are currently limited to the observation of the epicardial coronary arteries. However, many studies have highlighted the importance of the coronary microcirculation and microvascular disease. METHODS: CUDA was performed in vivo in open-chest procedures in 9 swine. Ultrafast plane-wave imaging at 2,000 frames/s was combined to an adaptive spatiotemporal filtering to achieve ultrahigh-sensitive imaging of the coronary blood flows. Quantification of the flow change was performed during hyperemia after a 30-s left anterior descending (LAD) artery occlusion followed by reperfusion and was compared to gold standard measurements provided by a flowmeter probe placed at a proximal location on the LAD (n = 5). Coronary flow reserve was assessed during intravenous perfusion of adenosine. Vascular damages were evaluated during a second set of experiments in which the LAD was occluded for 90 min, followed by 150 min of reperfusion to induce myocardial infarction (n = 3). Finally, the transthoracic feasibility of CUDA was assessed on 2 adult and 2 pediatric volunteers. RESULTS: Ultrahigh-sensitive cine loops of venous and arterial intramyocardial blood flows were obtained within 1 cardiac cycle. Quantification of the coronary flow changes during hyperemia was in good agreement with gold standard measurements (r2 = 0.89), as well as the assessment of coronary flow reserve (2.35 ± 0.65 vs. 2.28 ± 0.84; p = NS). On the infarcted animals, CUDA images revealed the presence of strong hyperemia and the appearance of abnormal coronary vessel structures in the reperfused LAD territory. Finally, the feasibility of transthoracic coronary vasculature imaging was shown on 4 human volunteers. CONCLUSIONS: Ultrafast Doppler imaging can map the coronary vasculature with high sensitivity and quantify intramural coronary blood flow changes.


Subject(s)
Coronary Vessels/diagnostic imaging , Echocardiography, Doppler, Color/methods , Fractional Flow Reserve, Myocardial , Myocardial Infarction/diagnostic imaging , Myocardial Perfusion Imaging/methods , Adult , Animals , Blood Flow Velocity , Child , Child, Preschool , Coronary Vessels/physiopathology , Disease Models, Animal , Feasibility Studies , Female , Humans , Hyperemia/diagnostic imaging , Hyperemia/physiopathology , Myocardial Infarction/physiopathology , Predictive Value of Tests , Sus scrofa
15.
Nat Protoc ; 12(10): 2050-2080, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28880278

ABSTRACT

Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon-a technique currently implemented in vitro. Taking 3-8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Nanostructures/chemistry , Ultrasonography/methods , Escherichia coli , Microscopy, Electron, Transmission
16.
Biochemistry ; 56(39): 5202-5209, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28782927

ABSTRACT

Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today's most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology.


Subject(s)
Biochemistry/methods , Magnetic Resonance Imaging/methods , Ultrasonography/methods , Animals , Engineering , Humans
17.
Appl Phys Lett ; 110(7): 073704, 2017 Feb 13.
Article in English | MEDLINE | ID: mdl-28289314

ABSTRACT

Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (∼250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

18.
ACS Nano ; 10(8): 7314-22, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27351374

ABSTRACT

Ultrasound is among the most widely used biomedical imaging modalities, but has limited ability to image specific molecular targets due to the lack of suitable nanoscale contrast agents. Gas vesicles-genetically encoded protein nanostructures isolated from buoyant photosynthetic microbes-have recently been identified as nanoscale reporters for ultrasound. Their unique physical properties give gas vesicles significant advantages over conventional microbubble contrast agents, including nanoscale dimensions and inherent physical stability. Furthermore, as a genetically encoded material, gas vesicles present the possibility that the nanoscale mechanical, acoustic, and targeting properties of an imaging agent can be engineered at the level of its constituent proteins. Here, we demonstrate that genetic engineering of gas vesicles results in nanostructures with new mechanical, acoustic, surface, and functional properties to enable harmonic, multiplexed, and multimodal ultrasound imaging as well as cell-specific molecular targeting. These results establish a biomolecular platform for the engineering of acoustic nanomaterials.


Subject(s)
Acoustics , Nanostructures , Proteins/chemistry , Ultrasonography , Contrast Media , Microbubbles
19.
Phys Med Biol ; 60(21): 8549-66, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26487501

ABSTRACT

Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.


Subject(s)
Elasticity Imaging Techniques/methods , High-Energy Shock Waves , Ultrasonography, Doppler/methods , Signal-To-Noise Ratio
20.
Crit Care Med ; 43(10): e420-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26110489

ABSTRACT

OBJECTIVES: Total liquid ventilation provides ultrafast and potently neuro- and cardioprotective cooling after shockable cardiac arrest and myocardial infarction in animals. Our goal was to decipher the effect of hypothermic total liquid ventilation on the systemic and cerebral response to asphyxial cardiac arrest using an original pressure- and volume-controlled ventilation strategy in rabbits. DESIGN: Randomized animal study. SETTING: Academic research laboratory. SUBJECTS: New Zealand Rabbits. INTERVENTIONS: Thirty-six rabbits were submitted to 13 minutes of asphyxia, leading to cardiac arrest. After resumption of spontaneous circulation, they underwent either normothermic life support (control group, n = 12) or hypothermia induced by either 30 minutes of total liquid ventilation (total liquid ventilation group, n = 12) or IV cold saline (conventional cooling group, n = 12). MEASUREMENTS AND MAIN RESULTS: Ultrafast cooling with total liquid ventilation (32 °C within 5 min in the esophagus) dramatically attenuated the post-cardiac arrest syndrome regarding survival, neurologic dysfunction, and histologic lesions (brain, heart, kidneys, liver, and lungs). Final survival rate achieved 58% versus 0% and 8% in total liquid ventilation, control, and conventional cooling groups (p < 0.05), respectively. This was accompanied by an early preservation of the blood-brain barrier integrity and cerebral hemodynamics as well as reduction in the immediate reactive oxygen species production in the brain, heart, and kidneys after cardiac arrest. Later on, total liquid ventilation also mitigated the systemic inflammatory response through alteration of monocyte chemoattractant protein-1, interleukin-1ß, and interleukin-8 transcripts levels compared with control. In the conventional cooling group, cooling was achieved more slowly (32 °C within 90-120 min in the esophagus), providing none of the above-mentioned systemic or organ protection. CONCLUSIONS: Ultrafast cooling by total liquid ventilation limits the post-cardiac arrest syndrome after asphyxial cardiac arrest in rabbits. This protection involves an early limitation in reactive oxidative species production, blood-brain barrier disruption, and delayed preservation against the systemic inflammatory response.


Subject(s)
Brain Diseases/etiology , Brain Diseases/prevention & control , Heart Arrest/complications , Hypothermia, Induced , Liquid Ventilation , Animals , Asphyxia/complications , Blood-Brain Barrier , Heart Arrest/etiology , Heart Arrest/physiopathology , Hemodynamics , Hypothermia, Induced/methods , Liquid Ventilation/methods , Male , Rabbits , Random Allocation , Sepsis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...