Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 106, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38217255

ABSTRACT

Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.


Subject(s)
Capsaicin , Glioblastoma , Humans , Capsaicin/pharmacology , Enzymes, Immobilized/metabolism , Glioblastoma/drug therapy , Fungal Proteins/metabolism
2.
Microorganisms ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764188

ABSTRACT

Natural pigments from haloarchaea are of great interest; bacterioruberin is the major pigment, it shows higher antioxidant power when compared with ß-carotene. However, characterization of bacterioruberin and its isomers along with its antioxidant and the matrix metallopeptidase 9 (MMP-9) inhibition activities in extracts from Natronoccoccus sp. TC6 and Halorubrum tebenquichense SU10 was not previously described, being the aim of this work. The carotenoids profile was performed by UV-Vis spectrophotometry, thin-layer chromatography, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry (UPLC-ESI-MS/MS). Antioxidant capacity was determined for DPPH, ABTS, and FRAP. In addition, MMP-9 inhibition was studied using docking simulations. The carotenoid profile of studied strains was composed of bacterioruberin, some derivatives like mono, bis, and tris anhydrobacterioruberin, and also some bacterioruberin cis isomers. The carotenoid pools showed antioxidant capacity for DPPH > ABTS > FRAP; Natronococcus sp. TC6 carotenoid pool was better for ABTS and DPPH, while Halorubrum tebenquichense SU10 carotenoid pool was better for FRAP. Additionally, docking and molecular dynamics suggest that bacterioruberin inhibits MMP-9 through hydrophobic interactions near the catalytic site. Bacterioruberin shows the higher binding energy of -8.3 (kcal/mol). The carotenoids profile of both strains was elucidated, their antioxidant activity and singular participation of each carotenoid on MMP-9 in silico inhibition were evaluated.

3.
3 Biotech ; 13(1): 13, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36540412

ABSTRACT

A simple screening methodology was employed to correlate the structures of hydroxycinnamic acids (HCAs) and their esterified derivatives with their in vitro antifungal activity over Fusarium oxysporum f. sp. lycopersici. The antifungal activity of the tested HCAs, i.e., coumaric > ferulic > sinapinic > caffeic acid, was higher after esterification and when the coumaric acid hydroxyl group was at the ortho-position. This outcome was strengthened by the elongation of the alkyl chain to 4-carbons and, particularly, by the esterification with isobutyl alcohol. The highest antifungal activity was obtained from isobutyl o-coumarate (iBoC), which inhibits 70% of mycelial growth at 1.2 mM. Thereby, a heterogeneous catalysis strategy was optimized by using the response surface methodology. At the best conditions found, the synthesis of iBoC was scaled up to 15 g, achieving 96% conversion yield in 48 h in a stirred batch reactor. This study reveals for the first time the potential of iBoC to provide commercial materials as antifungal agents to control F. oxysporum and other phytopathogenic fungi. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03425-7.

4.
Cells ; 11(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36231058

ABSTRACT

Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas. The review also addresses the administration of these therapeutic molecules by the intranasal route, a promising, non-conventional route that allows for direct access to the central nervous system without crossing the blood-brain barrier, avoiding potential adverse reactions and enabling the administration of large quantities of therapeutic molecules to the brain. Finally, we focus on the need to use biomaterials, which play an important role as nutrient carriers, scaffolds, and immune modulators in the administration of non-autologous cells. Little research has been conducted into the integration of biomaterials alongside intranasally administered cell therapy, a highly promising approach for the treatment of neurological disorders.


Subject(s)
Biocompatible Materials , Nervous System Diseases , Administration, Intranasal , Biocompatible Materials/therapeutic use , Brain , Humans , Nervous System Diseases/therapy , Stem Cells
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293330

ABSTRACT

Over the past thirty years, research has shown the huge potential of chitosan in biomedical applications such as drug delivery, tissue engineering and regeneration, cancer therapy, and antimicrobial treatments, among others. One of the major advantages of this interesting polysaccharide is its modifiability, which facilitates its use in tailor-made applications. In this way, the molecular structure of chitosan has been conjugated with multiple molecules to modify its mechanical, biological, or chemical properties. Here, we review the conjugation of chitosan with some bioactive molecules: hydroxycinnamic acids (HCAs); since these derivatives have been probed to enhance some of the biological effects of chitosan and to fine-tune its characteristics for its application in the biomedical field. First, the main characteristics of chitosan and HCAs are presented; then, the currently employed conjugation strategies between chitosan and HCAs are described; and, finally, the studied biomedical applications of these derivatives are discussed to present their limitations and advantages, which could lead to proximal therapeutic uses.


Subject(s)
Anti-Infective Agents , Chitosan , Chitosan/chemistry , Biocompatible Materials/chemistry , Coumaric Acids/therapeutic use , Tissue Engineering , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/chemistry
6.
Life (Basel) ; 12(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36143453

ABSTRACT

Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.

7.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35781918

ABSTRACT

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Subject(s)
Carboxylic Ester Hydrolases , Protein Engineering , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/metabolism , Biotechnology , Catalysis , Biocatalysis , Enzymes/metabolism
8.
Microorganisms ; 10(5)2022 May 08.
Article in English | MEDLINE | ID: mdl-35630427

ABSTRACT

Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.

9.
Electron. j. biotechnol ; 54: 17-25, nov.2021. ilus, graf
Article in English | LILACS | ID: biblio-1510730

ABSTRACT

BACKGROUND Hydroxycinnamic acids and some of their derivatives are molecules with interesting biological activities; for instance, hydroxylated hydroxycinnamic esters have proved to have antifungal properties, and thus the generation of these molecules is of industrial importance. In this study, the direct esterification capacity of the pure recombinant type B feruloyl esterase from Aspergillus terreus (AtFAE B) was evaluated by its ability to catalyze the synthesis of isobutyl o-coumarate, an interesting antifungal molecule. A ternary solvent system (isooctane/isobutanol/water) was employed to improve the synthesis of isobutyl o-coumarate, assessing different substrate concentrations, enzyme load, water percentages and pH and temperature values. RESULTS AtFAE B showed the highest initial rate at 18% (v/v) isobutanol and 50 mM o-coumaric acid, 0.04 mg/ml of enzyme, 4% (v/v) water without buffer and 40C. AtFAE B half-lives at 30C, 40C and 50C were 16.5 h, 1.75 h and 3.5 min, respectively. Thus, we decided to evaluate the bioconversion yield at 30C, where the enzyme showed the highest operational stability. At this temperature, we obtained a yield of ~80% after only 8 h of reaction, using a 78:18:4 isooctane:isobutanol:water ternary solvent system, with 50 mM of o-coumaric acid.CONCLUSIONS Under these improved conditions, the productivity was 1.06 g isobutyl o-coumarate/L*h with a biocatalyst yield of 209.6 kg isobutyl o-coumarate/kg free AtFAE B, demonstrating the promising potential of AtFAE B to accept the non-canonical o-coumaric acid as the substrate and to achieve the synthesis of isobutyl o-coum


Subject(s)
Aspergillus/metabolism , Coumarins/metabolism , Antifungal Agents/metabolism , Aspergillus/enzymology , Solvents/metabolism , Coumarins/therapeutic use , Antifungal Agents/therapeutic use
10.
Int J Mol Sci ; 22(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34639079

ABSTRACT

Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration. In this study, we used the nose-to brain pathway to deliver oligodendrocyte lineage cells (human oligodendroglioma (HOG) cells), which behave similarly to OPCs in vitro. To this end, we administered GFP-labelled HOG cells intranasally to experimental animals, which were subsequently euthanised at 30 or 60 days. Our results show that the intranasal route is a viable route to the CNS and that HOG cells administered intranasally migrate preferentially to niches of OPCs (clusters created during embryonic development and adult life). Our study provides evidence, albeit limited, that HOG cells either form clusters or adhere to clusters of OPCs in the brains of experimental animals.


Subject(s)
Brain/physiology , Demyelinating Diseases/therapy , Oligodendrocyte Precursor Cells/cytology , Oligodendroglioma/chemistry , Remyelination , Stem Cells/cytology , Administration, Intranasal , Animals , Brain/cytology , Cell Differentiation , Cells, Cultured , Humans
11.
Appl Microbiol Biotechnol ; 105(10): 3901-3917, 2021 May.
Article in English | MEDLINE | ID: mdl-33928423

ABSTRACT

Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points• Most interesting alkyl hydroxycinnamates applications are summarized.• Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.• Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.


Subject(s)
Biotechnology , Enzymes, Immobilized , Enzymes, Immobilized/metabolism , Esterification
12.
Appl Microbiol Biotechnol ; 104(23): 10033-10045, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33026494

ABSTRACT

The enzymatic synthesis of alkyl ferulates is an important reaction in cosmetic and pharmaceutical chemistries, since it may allow to expand the biorefinery concept valorizing biomass wastes enriched in ferulic acid. However, robust biocatalysts for that purpose are scarce. Herein, we have immobilized the type A feruloyl esterase from Aspergillus niger (AnFaeA) as cross-linked enzyme aggregates, employing chitosan as co-feeder (ChCLEAs). High immobilization yields and relative activity recovery were attained in all assessed conditions (> 93%). Furthermore, we enhanced the thermal stability of the soluble enzyme 32-fold. AnFaeA-ChCLEAs were capable to quantitatively perform the solvent-free direct esterification of short- to medium-chain alkyl ferulates (C4-C12) in less than 24 h. By raising the operational temperature to 50 °C, AnFaeA-ChCLEAs transformed 350 mM ferulic acid into isopentyl ferulate with a space-time yield of 46.1 g of product × L-1 × day-1, 73-fold higher than previously reported. The overall sustainability of this alkyl ferulate production bioprocess is supported by the high total turnover number (TTN 7 × 105) and the calculated green metrics (E factor = 30). Therefore, we herein present a robust, efficient, and versatile heterogeneous biocatalyst useful for the synthesis of a wide diversity of alkyl ferulates. KEY POINTS: • CLEAs of feruloyl esterase A from A. niger using chitosan as co-feeder were obtained. • Microenvironment of the biocatalysts allowed to obtain C1 to C18 alkyl ferulates. • Biocatalyst at boundary conditions showed a high productivity of 46 g/L day. Graphical Abstract.


Subject(s)
Aspergillus niger , Chitosan , Carboxylic Ester Hydrolases
13.
Appl Biochem Biotechnol ; 192(2): 494-516, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32399842

ABSTRACT

Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and ß-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 µg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into ß-oxidative pathway and/or vanillin oxidation to produce vanillic acid.


Subject(s)
Amycolatopsis/metabolism , Coumaric Acids/metabolism , Adenosine Triphosphate/metabolism , Amycolatopsis/cytology , Amycolatopsis/growth & development , Biotechnology , Biotransformation , Culture Techniques , Energy Metabolism , Immersion , Intracellular Space/metabolism , Kinetics , Oxidation-Reduction
14.
J Biotechnol ; 316: 6-16, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32305629

ABSTRACT

Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.


Subject(s)
Aspergillus niger/enzymology , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/metabolism , Enzymes, Immobilized/metabolism , Biocatalysis , Butyrates/metabolism , Carboxylic Ester Hydrolases/chemistry , Enzymes, Immobilized/chemistry , Glutaral/chemistry , Methacrylates/chemistry , Polymers/chemistry , Serum Albumin, Bovine/chemistry , Silicon Dioxide/chemistry
15.
Front Immunol ; 11: 621735, 2020.
Article in English | MEDLINE | ID: mdl-33584720

ABSTRACT

In late December 2019, multiple atypical pneumonia cases resulted in severe acute respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia, fever, dry cough, and fatigue. However, some neurological complications following SARS-CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia, hyposmia, neuralgia, and seizures. Indeed, a growing literature demonstrates that neurotropism is a common feature of coronaviruses; therefore, the infection mechanisms already described in other coronaviruses may also be applicable for SARS-CoV-2. Understanding the underlying pathogenetic mechanisms in the nervous system infection and the neurological involvement is essential to assess possible long-term neurological alteration of COVID-19. Here, we provide an overview of associated literature regarding possible routes of COVID-19 neuroinvasion, such as the trans-synapse-connected route in the olfactory pathway and peripheral nerve terminals and its neurological implications in the central nervous system.


Subject(s)
COVID-19/virology , Nervous System/virology , SARS-CoV-2/pathogenicity , Animals , Humans
16.
Int Microbiol ; 23(2): 335-343, 2020 May.
Article in English | MEDLINE | ID: mdl-31823203

ABSTRACT

Gastrointestinal lipase inhibitors are molecules of pharmaceutical interest due to their use as anti-obesity drugs. In this study, forty strains isolated from soil and sediments were identified with the ability to produce inhibition of gastrointestinal lipase activity. The biomass extract of these strains showed at least 50% inhibition in the hydrolysis of tributyrin by recombinant human pancreatic lipase (rHPL) or rabbit gastric lipase (RGL) by in vitro assays. Based on gene sequencing, the isolates were identified mainly as Streptomycetes. Moreover, none of the identified strains has been reported to be lipase inhibitor producers, so they can be viewed as potential sources for obtaining new drugs. IC50 values of the three best inhibitor extracts showed that AC104-10 was the most promising strain for production of gastrointestinal lipase inhibitors. AC104-10 shows 99% homology (16S rRNA gene fragment) to Streptomyces cinereoruber strain NBRC 12756. An inhibitory study over trypsin activity revealed that AC104-10 extract, as well as THL, had no significant effect on the activity of this protease, showing its specificity for lipases. In addition, analyzes by MALDI-TOF mass spectrometry of the enzyme-inhibitor complex revealed that there is a covalent interaction of the AC104-10 inhibitor with the catalytic serine of the pancreatic lipase, and that the molecular weight of the inhibitor is approximately 686.19 Da.


Subject(s)
Geologic Sediments/microbiology , Streptomyces/isolation & purification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Animals , Biological Products , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Lakes/microbiology , Lipase/antagonists & inhibitors , Lipase/metabolism , RNA, Ribosomal, 16S , Soil Microbiology , Streptomyces/genetics , Streptomyces/metabolism
17.
Curr Microbiol ; 76(10): 1215-1224, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31254008

ABSTRACT

Nejayote is an alkaline wastewater generated during the nixtamalization process. Nejayote contains high-value compounds such as ferulic acid (FA), which is widely employed as a substrate for the biotechnological production of flavors and aromas. In the present study, the isolation, identification, and characterization of a native strain of Bacillus megaterium were performed, and its capacity to produce 4-vinylguaiacol (4VG) from ferulic acid was evaluated by employing growing cell and resting cell systems. Growing cells of native B. megaterium biotransformed 6 mM crude FA in nejayote into 2.1 mM 4VG, reaching a productivity of 0.21 mM h-1 4VG, while nejayote enriched with FA at 10, 15, and 25 mM resulted in the formation of 2.4, 3.8, and 6.2 mM 4VG and productivities of 0.24, 0.38, and 0.51 mM h-1 4VG, respectively. In the resting cell system, from 6 and 25 mM pure FA, 3.5 mM 4VG was produced (0.18 mM h-1 4VG), while at 10 and 15 mM FA, 4.6 and 5.1 mM 4VG (average of 0.24 mM h-1 4VG) were obtained, respectively. The native B. megaterium strain, isolated from nejayote, showed great biotechnological potential to produce 4VG from crude FA contained in this wastewater, in which other Bacillus species, such as B. licheniformis and B. cereus, were unable to grow and biotransform FA into 4VG.


Subject(s)
Bacillus megaterium/classification , Bacillus megaterium/metabolism , Coumaric Acids/metabolism , Wastewater/microbiology , Zea mays , Bacillus megaterium/genetics , Bacillus megaterium/growth & development , Biomass , Biotransformation , Coumaric Acids/chemistry , Guaiacol/analogs & derivatives , Guaiacol/metabolism , Phylogeny , Wastewater/chemistry
18.
Heliyon ; 4(11): e00954, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30519656

ABSTRACT

Cultivable halophilic microorganisms were isolated and identified from saline and alkaline-sodic soils: Cuatro Cienegas, Sayula and San Marcos lakes. Physicochemical characteristics of soils were determined to understand the relationship between those and the microorganisms isolated. The Cuatro Cienegas soils had a neutral pH, EC of 2.3-8 dS cm-1, classified as moderately saline. Whereas, the soils from Sayula and San Marcos lakes, had an alkaline pH, EC 15 to 65 dS m-1, typical of saline-sodic. We identified 23 cultivable halophilic bacteria using 16s rDNA, being Halobacillus sp., Marinococcus sp., and Alkalibacillus sp. the predominant genus by culture dependent approach. We found a correlation between the soils anion and cation content with the occurrence of different genus of halophilic bacteria in each studied site. Alkalibacillus sp. was predominant in Sayula and San Marcos lakes and was related to the high Na+ content; while Bacillus sp. and Halobacillus sp. were predominant in Cuatro Cienegas, their occurrence was related to a high content of Ca2+, Mg2+, and SO4 2-.

19.
Electron. j. biotechnol ; 35: 1-9, sept. 2018. graf, tab
Article in English | LILACS | ID: biblio-1047456

ABSTRACT

Background: Aspergillus ochraceus was isolated from coffee pulp and selected as an interesting hydroxycinnamoyl esterase strain producer, using an activity microplate high-throughput screening method. In this work, we purified and characterized a new type C A. ochraceus feruloyl esterase (AocFaeC), which synthesized specifically butyl hydroxycinnamates in a ternary solvent system. Results: AocFaeC was produced by solid state fermentation, reaching its maximal activity (1.1 U/g) after 48 h of culture. After purification, the monomeric protein (34 kDa) showed a specific activity of 57.9 U/mg towards methyl ferulate. AocFaeC biochemical characterization confirmed its identity as a type C feruloyl esterase and suggested the presence of a catalytic serine in the active site. Its maximum hydrolytic activity was achieved at 40°C and pH 6.5 and increased by 109 and 77% with Ca2+ and Mg2+, but decreased by 90 and 45% with Hg2+ and Cu2+, respectively. The initial butyl ferulate synthesis rate increased from 0.8 to 23.7 nmol/min after transesterification condition improvement, using an isooctane:butanol:water ternary solvent system, surprisingly the synthesis activity using other alcohols was negligible. At these conditions, the synthesis specific activities for butyl p-coumarate, sinapinate, ferulate, and caffeate were 87.3, 97.6, 168.2, and 234 U/µmol, respectively. Remarkably, AocFaeC showed 5 folds higher butyl caffeate synthesis rate compared to type B Aspergillus niger feruloyl esterase, a well-known enzyme for its elevated activity towards caffeic acid esters. Conclusions: Type C feruloyl esterase from A. ochraceus is a butanol specific biocatalyst for the synthesis of hydroxycinnamates in a ternary solvent system


Subject(s)
Aspergillus ochraceus/enzymology , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/chemical synthesis , Solvents , Spectrophotometry , Carboxylic Ester Hydrolases/isolation & purification , Chromatography , Coffee , Butanols , Electrophoresis , Fermentation
20.
Methods Mol Biol ; 1835: 39-68, 2018.
Article in English | MEDLINE | ID: mdl-30109645

ABSTRACT

Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The CAZy database, which classifies enzymes that assemble, modify, and break down carbohydrates and glycoconjugates, classifies all carbohydrate esterases into 16 families. This chapter is an overview of the research for nearly 50 years around the main groups of carbohydrate esterases dealing with the degradation of polysaccharides, their main biochemical and molecular traits, as well as its application for the synthesis of high added value esters.


Subject(s)
Carbohydrate Metabolism , Esterases/metabolism , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Chitin/chemistry , Chitin/metabolism , Chlorogenic Acid/metabolism , Esterases/chemistry , Esters/metabolism , Molecular Structure , Pectins/chemistry , Pectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...