Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Genet Med ; 23(11): 2150-2159, 2021 11.
Article in English | MEDLINE | ID: mdl-34345024

ABSTRACT

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Subject(s)
Intellectual Disability , Microcephaly , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mice , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
2.
Am J Med Genet A ; 185(12): 3877-3883, 2021 12.
Article in English | MEDLINE | ID: mdl-34357686

ABSTRACT

Kleefstra syndrome (KS) is a rare autosomic dominant genetic disorder caused by euchromatic histone methyltransferase 1 (EHMT1) alterations. Patients mainly present with moderate to severe intellectual disability, a severe delay in/or absence of speech, autism spectrum disorder, childhood hypotonia, neuropsychiatric anomalies, and distinctive dysmorphic features. Here, we report the cases of a male and a female, two younger siblings of three, with asymptomatic parents. An EHMT1 new mutation was identified. Both presented with a typical core phenotype. Some specific features were noted, such as macrocephaly (previously reported) and enuresis (not yet described). Parental analysis identified the mutation in the mosaic state in the father. Reverse phenotyping enabled us to highlight the pauci phenotype features of inguinal hernia, azoospermia, and possible behavioral disorders. This allowed us to adapt his follow-up and genetic counseling for the family. Our three reported cases provide a new description of KS with an intragenic EHMT1 mutation, whereas in the literature most reported cases have EHMT1 deletions. Moreover, in the areas of next-generation sequencing and trio techniques with parental segregation, it is important to remain cautious about disregarding variants based on an autosomal recessive hypothesis.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Genetic Predisposition to Disease , Heart Defects, Congenital/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Megalencephaly/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Chromosome Deletion , Chromosomes, Human, Pair 9/genetics , Comparative Genomic Hybridization , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/pathology , Female , Genetic Counseling , Heart Defects, Congenital/complications , Heart Defects, Congenital/pathology , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Megalencephaly/pathology , Mosaicism , Mutation , Phenotype , Young Adult
3.
Clin Genet ; 99(5): 650-661, 2021 05.
Article in English | MEDLINE | ID: mdl-33415748

ABSTRACT

Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.


Subject(s)
Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/physiopathology , Clinical Trials as Topic , Megalencephaly/diagnostic imaging , Megalencephaly/physiopathology , Neuroimaging , Skin Diseases, Vascular/diagnostic imaging , Skin Diseases, Vascular/physiopathology , Telangiectasis/congenital , Abnormalities, Multiple/drug therapy , Adolescent , Adult , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/genetics , Cohort Studies , Female , Forecasting , Humans , Magnetic Resonance Imaging , Male , Megalencephaly/drug therapy , Skin Diseases, Vascular/drug therapy , Telangiectasis/diagnostic imaging , Telangiectasis/drug therapy , Telangiectasis/physiopathology , Young Adult
4.
Clin Genet ; 99(2): 318-324, 2021 02.
Article in English | MEDLINE | ID: mdl-33169370

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.


Subject(s)
Bardet-Biedl Syndrome/genetics , Microtubule-Associated Proteins/genetics , Retroelements , Cohort Studies , Female , Founder Effect , Gene Frequency , Humans , Male , Mutagenesis, Insertional , Pedigree , Whole Genome Sequencing
5.
Clin Genet ; 98(1): 10-18, 2020 07.
Article in English | MEDLINE | ID: mdl-32233106

ABSTRACT

Overlapping syndromes such as Noonan, Cardio-Facio-Cutaneous, Noonan syndrome (NS) with multiple lentigines and Costello syndromes are genetically heterogeneous conditions sharing a dysregulation of the RAS/mitogen-activated protein kinase (MAPK) pathway and are known collectively as the RASopathies. PTPN11 was the first disease-causing gene identified in NS and remains the more prevalent. We report seven patients from three families presenting heterozygous missense variants in PTPN11 probably responsible for a disease phenotype distinct from the classical Noonan syndrome. The clinical presentation and common features of these seven cases overlap with the SHORT syndrome. The latter is the consequence of PI3K/AKT signaling deregulation with the predominant disease-causing gene being PIK3R1. Our data suggest that the phenotypic spectrum associated with pathogenic variants of PTPN11 could be wider than previously described, and this could be due to the dual activity of SHP2 (ie, PTPN11 gene product) on the RAS/MAPK and PI3K/AKT signaling.


Subject(s)
Genetic Variation/genetics , Growth Disorders/genetics , Hypercalcemia/genetics , Metabolic Diseases/genetics , Nephrocalcinosis/genetics , Noonan Syndrome/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Female , Humans , MAP Kinase Signaling System/genetics , Male , Mitogen-Activated Protein Kinases/genetics , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics
7.
J Med Genet ; 57(5): 301-307, 2020 05.
Article in English | MEDLINE | ID: mdl-30287593

ABSTRACT

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.


Subject(s)
Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Autism Spectrum Disorder/pathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Child , Child, Preschool , Chromosomes, Human, Pair 16/genetics , Developmental Disabilities/pathology , Female , Gene Duplication/genetics , Genetic Association Studies , Humans , Infant , Intellectual Disability/pathology , Male , Phenotype , Risk Factors , Young Adult
8.
Genet Med ; 22(3): 538-546, 2020 03.
Article in English | MEDLINE | ID: mdl-31723249

ABSTRACT

PURPOSE: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292). METHODS: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing. Available data were analyzed to characterize the canonical phenotype and examine genotype-phenotype relationships. RESULTS: Probands presented with ID as well as a spectrum of neurodevelopmental features including ASD, among others. All ZNF292 variants were de novo, except in one family with dominant inheritance. ZNF292 encodes a highly conserved zinc finger protein that acts as a transcription factor and is highly expressed in the developing human brain supporting its critical role in neurodevelopment. CONCLUSION: De novo and dominantly inherited variants in ZNF292 are associated with a range of neurodevelopmental features including ID and ASD. The clinical spectrum is broad, and most individuals present with mild to moderate ID with or without other syndromic features. Our results suggest that variants in ZNF292 are likely a recurrent cause of a neurodevelopmental disorder manifesting as ID with or without ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Carrier Proteins/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/pathology , Neuroimaging/methods , Exome Sequencing/methods
9.
Nat Genet ; 51(10): 1438-1441, 2019 10.
Article in English | MEDLINE | ID: mdl-31570889

ABSTRACT

Hypopigmentation along Blaschko's lines is a hallmark of a poorly defined group of mosaic syndromes whose genetic causes are unknown. Here we show that postzygotic inactivating mutations of RHOA cause a neuroectodermal syndrome combining linear hypopigmentation, alopecia, apparently asymptomatic leukoencephalopathy, and facial, ocular, dental and acral anomalies. Our findings pave the way toward elucidating the etiology of pigmentary mosaicism and highlight the role of RHOA in human development and disease.


Subject(s)
Mosaicism , Mutation , Neurocutaneous Syndromes/etiology , Skin Pigmentation/genetics , Zygote , rhoA GTP-Binding Protein/genetics , Humans , Neurocutaneous Syndromes/pathology
11.
Clin Genet ; 96(4): 317-329, 2019 10.
Article in English | MEDLINE | ID: mdl-31245841

ABSTRACT

Pathogenic variants in FLNC encoding filamin C have been firstly reported to cause myopathies, and were recently linked to isolated cardiac phenotypes. Our aim was to estimate the prevalence of FLNC pathogenic variants in subtypes of cardiomyopathies and to study the relations between phenotype and genotype. DNAs from a cohort of 1150 unrelated index-patients with isolated cardiomyopathy (700 hypertrophic, 300 dilated, 50 restrictive cardiomyopathies, and 100 left ventricle non-compactions) have been sequenced on a custom panel of 51 cardiomyopathy disease-causing genes. An FLNC pathogenic variant was identified in 28 patients corresponding to a prevalence ranging from 1% to 8% depending on the cardiomyopathy subtype. Truncating variants were always identified in patients with dilated cardiomyopathy, while missense or in-frame indel variants were found in other phenotypes. A personal or family history of sudden cardiac death (SCD) was significantly higher in patients with truncating variants than in patients carrying missense variants (P = .01). This work reported the first observation of a left ventricular non-compaction associated with a unique probably causal variant in FLNC which highlights the role of FLNC in cardiomyopathies. A correlation between the nature of the variant and the cardiomyopathy subtype was observed as well as with SCD risk.


Subject(s)
Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Filamins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Alleles , Cardiomyopathies/epidemiology , Echocardiography , Electrocardiography , Female , Genetic Testing , Genotype , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Phenotype , Prevalence , Sequence Analysis, DNA
12.
Hum Mutat ; 40(10): 1713-1730, 2019 10.
Article in English | MEDLINE | ID: mdl-31050087

ABSTRACT

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/diagnosis , Ataxia Telangiectasia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Alternative Splicing , Cell Cycle , Cell Line , DNA Mutational Analysis , Genetic Association Studies/methods , Genotype , Humans , Mutation , Phenotype
13.
J Med Genet ; 56(8): 526-535, 2019 08.
Article in English | MEDLINE | ID: mdl-30923172

ABSTRACT

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Subject(s)
Chromosome Aberrations , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Gene Rearrangement , Genetic Association Studies , Phenotype , Whole Genome Sequencing , Adolescent , Adult , Biomarkers , Child , Child, Preschool , Chromosome Breakpoints , DNA Copy Number Variations , Female , Genetic Association Studies/methods , Humans , Infant , Male , Structure-Activity Relationship , Translocation, Genetic , Young Adult
14.
Eur J Hum Genet ; 27(4): 525-534, 2019 04.
Article in English | MEDLINE | ID: mdl-30622331

ABSTRACT

Split-hand-split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Hand Deformities, Congenital/genetics , Limb Deformities, Congenital/genetics , Segmental Duplications, Genomic/genetics , Adult , Child, Preschool , Comparative Genomic Hybridization/methods , F-Box Proteins/genetics , Female , Gene Rearrangement/genetics , Genetic Predisposition to Disease , Hand Deformities, Congenital/diagnostic imaging , Hand Deformities, Congenital/physiopathology , Humans , Infant , Limb Deformities, Congenital/diagnostic imaging , Limb Deformities, Congenital/physiopathology , Male , Pedigree , Phenotype , Proteasome Endopeptidase Complex/genetics , Proto-Oncogene Proteins/genetics , Radiography , Wnt Proteins/genetics , Young Adult
15.
Neuromuscul Disord ; 29(2): 114-126, 2019 02.
Article in English | MEDLINE | ID: mdl-30598237

ABSTRACT

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder characterized by progressive motor and respiratory decline during the first year of life. Early and late-onset cases have recently been reported, although not meeting the established diagnostic criteria, these cases have been genotyped. We thus conducted a national multicenter observational retrospective study to determine the prognosis of children with SMARD1 according to their phenotype. We recorded all known French pediatric cases with mutations identified on the immunoglobulin µ-binding protein 2 gene and the presence of respiratory symptoms. Thirty centers provided 22 observations. A diaphragmatic palsy was diagnosed 1.5 months (p = 0.02) after first respiratory symptoms, and hypotonia preceded areflexia by 4 months (p = 0.02). Early onset of symptoms leading to specialist consultation before the age of 3 months was associated with a significantly worse prognosis (p < 0.01). Among the 6 patients who were still alive, all were tracheostomized. Only one case survived beyond 2 years without artificial ventilation. The remaining patients died at a median age of 7 months. Our results may help pediatricians to provide medical information to parents and improve the decision-making process of setting up life support.


Subject(s)
DNA-Binding Proteins/genetics , Muscular Atrophy, Spinal/diagnosis , Respiratory Distress Syndrome, Newborn/diagnosis , Transcription Factors/genetics , Child, Preschool , Disease Progression , Female , France , Humans , Infant , Infant, Newborn , Male , Muscular Atrophy, Spinal/genetics , Mutation , Phenotype , Prognosis , Respiration, Artificial , Respiratory Distress Syndrome, Newborn/genetics , Retrospective Studies
16.
Hum Mutat ; 39(3): 319-332, 2018 03.
Article in English | MEDLINE | ID: mdl-29243349

ABSTRACT

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Subject(s)
Microcephaly/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Child, Preschool , Cognition , Cohort Studies , Family , Female , Genetic Association Studies , Geography , Humans , Infant , Magnetic Resonance Imaging , Male , Microcephaly/epidemiology
17.
Am J Med Genet C Semin Med Genet ; 175(4): 417-430, 2017 12.
Article in English | MEDLINE | ID: mdl-29178447

ABSTRACT

CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.


Subject(s)
CHARGE Syndrome/diagnosis , CHARGE Syndrome/genetics , Genetic Association Studies , Genotype , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Adult , Alleles , Amino Acid Substitution , Central Nervous System/abnormalities , Child , Child, Preschool , Cohort Studies , Cranial Nerves/abnormalities , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Female , France , Genetic Testing , Humans , Infant , Male , Molecular Diagnostic Techniques , Young Adult
18.
Am J Med Genet A ; 173(11): 2923-2946, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28948695

ABSTRACT

Facial femoral syndrome (FFS) is a rare congenital abnormality, also known as femoral hypoplasia-unusual facies syndrome, characterized by variable degrees of femoral hypoplasia, associated with specific facial features. Other organ malformations are sometimes present. Most cases are sporadic, but rare family observations suggest genetic origin. However, no chromosomal or genetic abnormalities have ever been incriminated. We conducted a comprehensive literature review and added three new unreported observations. Through these 92 cases, authors aimed to determine sonographic signs that should direct towards diagnosis, and discuss potential genetic etiology. Diagnosis was suspected prenatally in 27.2% of cases, and maternal diabetes was found in 42.4% of patients. When fetal karyotype was available, it was normal in 97.1% of cases, but genomic variations of unknown significance were discovered in all three cases in which array comparative genomic hybridization (CGH) techniques were applied. Femoral affection defining FFS was hypoplasia in 78.3% of cases, agenesis in 12%, and both in 9.8%. Affection was bilateral in 84.8% of cases. Retrognathia was present in 65.2% of cases, cleft lip and/or palate in 63%, and other organ malformations in 53.3%. Intellectual development was normal in 79.2% of cases. Better prenatal recognition of this pathology, notably frequently associated malformations, should lead to a more precise estimation of functional prognosis. It seems likely that today's tendency to systematically employ array-CGH and exome/genome sequencing methods to investigate malformative sequences will allow the identification of a causal genetic abnormality in the near future.


Subject(s)
Abnormalities, Multiple/diagnosis , Femur/abnormalities , Pierre Robin Syndrome/diagnosis , Prenatal Diagnosis , Ultrasonography, Prenatal/methods , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adult , Cleft Lip/diagnosis , Cleft Lip/diagnostic imaging , Cleft Lip/genetics , Cleft Lip/physiopathology , Comparative Genomic Hybridization , Diabetes, Gestational/diagnosis , Diabetes, Gestational/diagnostic imaging , Diabetes, Gestational/physiopathology , Female , Femur/diagnostic imaging , Femur/physiopathology , Fetus , Humans , Infant, Newborn , Male , Middle Aged , Pierre Robin Syndrome/diagnostic imaging , Pierre Robin Syndrome/genetics , Pierre Robin Syndrome/physiopathology , Pregnancy
19.
Am J Med Genet A ; 173(10): 2782-2788, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28815877

ABSTRACT

Prenatal growth is a complex dynamic process controlled by various genetic and environmental factors. Among genetic syndromes characterized by growth restriction, MULIBREY nanism represents a rare autosomal recessive condition presenting with severe pre- and post-natal growth failure, characteristic dysmorphic features but normal neurological development. The phenotype of MULIBREY nanism is variable and overlaps with others such as the Silver-Russell syndrome. We report here three patients in two distinct non-Finnish families from North France who were first suspected to have Silver-Russell syndrome which failed to be confirmed on molecular analyses. Clinical features in the three patients led us to also consider the diagnosis of MULIBREY nanism. Sequencing of the TRIM37 gene showed the three patients shared a novel nonsense mutation (c.181 C>T p.Arg61*) in a heterozygous state. Quantitative fluorescent multiplex PCR identified a new deletion of exons 15 and 16 in TRIM37 in one isolated patient and another deletion of exon 9 in two siblings. Breakpoints of both the deletions were localized in Alu sequences. Given the high number of Alu repeats, which predispose to gene rearrangements, one should always consider such genetic rearrangements in the molecular diagnosis of non-Finnish MULIBREY nanism patients. Early diagnosis of the disease would prompt careful cardiac follow up of such patients as cardiological complication is a characteristic feature of the MULIBREY nanism as described in this report.


Subject(s)
Gene Rearrangement , Mulibrey Nanism/genetics , Mutation , Nuclear Proteins/genetics , Adolescent , Child , Child, Preschool , Female , France , Humans , Infant , Male , Mulibrey Nanism/pathology , Prognosis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
20.
Genet Med ; 19(9): 989-997, 2017 09.
Article in English | MEDLINE | ID: mdl-28151489

ABSTRACT

PURPOSE: Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. METHODS: We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. RESULTS: We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10-5). We identified 40 different mutations and found strong oncogenic mutations more frequently in patients without brain overgrowth (50.6%) than in those with brain overgrowth (15.2%; P = 0.00055). Mutant allele levels were higher in skin and overgrown tissues than in blood and buccal samples (P = 3.9 × 10-25), regardless of the phenotype. CONCLUSION: Our data demonstrate the value of ultradeep NGS for molecular diagnosis of PROS, highlight its substantial allelic heterogeneity, and confirm that optimal diagnosis requires fresh skin or surgical samples from affected regions. Our findings may be of value in guiding future recommendations for genetic testing in PROS and other mosaic conditions.Genet Med advance online publication 02 February 2017.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Genetic Association Studies , Genetic Testing , Growth Disorders/diagnosis , Growth Disorders/genetics , Mutation , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Management , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Mosaicism , Phenotype , Prenatal Diagnosis , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...