Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters











Publication year range
1.
J Vasc Res ; 57(6): 325-340, 2020.
Article in English | MEDLINE | ID: mdl-32777783

ABSTRACT

We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery, Common/drug effects , Diet, High-Fat , Femoral Artery/drug effects , Neointima , Resveratrol/pharmacology , Sirtuin 1/metabolism , Vascular System Injuries/drug therapy , AMP-Activated Protein Kinases/genetics , Animals , Carotid Artery Injuries/enzymology , Carotid Artery Injuries/pathology , Carotid Artery, Common/enzymology , Carotid Artery, Common/pathology , Disease Models, Animal , Femoral Artery/enzymology , Femoral Artery/injuries , Femoral Artery/pathology , Insulin Resistance , Mice, Knockout , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1/genetics , Vascular System Injuries/enzymology , Vascular System Injuries/pathology
2.
Diabetes ; 68(9): 1767-1777, 2019 09.
Article in English | MEDLINE | ID: mdl-31171562

ABSTRACT

Fatty acid binding protein 4 (FABP4) is a leaderless lipid carrier protein primarily expressed by adipocytes and macrophages that not only functions intracellularly but is also secreted. The secretion is mediated via unconventional mechanism(s), and in a variety of species, metabolic dysfunction is correlated with elevated circulating FABP4 levels. In diabetic animals, neutralizing antibodies targeting serum FABP4 increase insulin sensitivity and attenuate hepatic glucose output, suggesting the functional importance of circulating FABP4. Using animal and cell-based models, we show that FABP4 is secreted from white, but not brown, adipose tissue in response to lipolytic stimulation in a sirtuin-1 (SIRT1)-dependent manner via a mechanism that requires some, but not all, autophagic components. Silencing of early autophagic genes such as Ulk1/2, Fip200, or Beclin-1 or chemical inhibition of ULK1/2 or VPS34 attenuated secretion, while Atg5 knockdown potentiated FABP4 release. Genetic knockout of Sirt1 diminished secretion, and serum FABP4 levels were undetectable in Sirt1 knockout mice. In addition, blocking SIRT1 by EX527 attenuated secretion while activating SIRT1 by resveratrol-potentiated secretion. These studies suggest that FABP4 secretion from adipocytes is regulated by SIRT1 and requires early autophagic components.


Subject(s)
Adipocytes/metabolism , Autophagy/physiology , Fatty Acid-Binding Proteins/metabolism , Sirtuin 1/metabolism , Adipose Tissue/metabolism , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Gene Silencing , Insulin Resistance/physiology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sirtuin 1/genetics
3.
J Clin Invest ; 128(10): 4654-4668, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30198904

ABSTRACT

Checkpoint blockade immunotherapy targeting the PD-1/PD-L1 inhibitory axis has produced remarkable results in the treatment of several types of cancer. Whereas cytotoxic T cells are known to provide important antitumor effects during checkpoint blockade, certain cancers with low MHC expression are responsive to therapy, suggesting that other immune cell types may also play a role. Here, we employed several mouse models of cancer to investigate the effect of PD-1/PD-L1 blockade on NK cells, a population of cytotoxic innate lymphocytes that also mediate antitumor immunity. We discovered that PD-1 and PD-L1 blockade elicited a strong NK cell response that was indispensable for the full therapeutic effect of immunotherapy. PD-1 was expressed on NK cells within transplantable, spontaneous, and genetically induced mouse tumor models, and PD-L1 expression in cancer cells resulted in reduced NK cell responses and generation of more aggressive tumors in vivo. PD-1 expression was more abundant on NK cells with an activated and more responsive phenotype and did not mark NK cells with an exhausted phenotype. These results demonstrate the importance of the PD-1/PD-L1 axis in inhibiting NK cell responses in vivo and reveal that NK cells, in addition to T cells, mediate the effect of PD-1/PD-L1 blockade immunotherapy.


Subject(s)
B7-H1 Antigen/immunology , Immunotherapy , Killer Cells, Natural/immunology , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Humans , K562 Cells , Killer Cells, Natural/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics
4.
Exp Cell Res ; 371(1): 83-91, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30059665

ABSTRACT

SIRT1 is a protein deacetylase with a broad range of biological functions, many of which are known to be important in carcinogenesis, however much of the literature regarding the role of SIRT1 in cancer remains conflicting. In this study we assessed the effect of SIRT1 on the initiation and progression of thymic T cell lymphomas. We employed mouse strains in which SIRT1 activity was absent or could be reversibly modulated in conjunction with thymic lymphoma induction using either the N-nitroso-N-methylurea (NMU) carcinogenesis or the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) transgene. Decreased SIRT1 activity reduced the development of thymic lymphomas in the NMU-treated mice but was permissive for the formation of lung adenomas. Conversely, in the NPM-ALK transgenic mice, decreased SIRT1 activity had a modest promoting effect in the development of thymic lymphomas. The results of the work presented here add to the growing body of evidence that sirt1 is neither an outright oncogene nor a tumor suppressor. These opposing results in two models of the same disease suggest that the influence of sirt1 on carcinogenesis may lie in a role in tumor surveillance.


Subject(s)
Adenocarcinoma of Lung/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, T-Cell/genetics , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Sirtuin 1/genetics , Thymus Neoplasms/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/etiology , Adenocarcinoma of Lung/mortality , Administration, Oral , Animals , Antineoplastic Agents, Hormonal/pharmacology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/etiology , Lymphoma, T-Cell/mortality , Male , Methylnitrosourea/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins, Fusion/metabolism , Organ Specificity , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Sirtuin 1/metabolism , Survival Analysis , Tamoxifen/pharmacology , Thymus Gland/drug effects , Thymus Gland/metabolism , Thymus Gland/pathology , Thymus Neoplasms/drug therapy , Thymus Neoplasms/etiology , Thymus Neoplasms/mortality , Transfection
5.
EMBO J ; 36(21): 3175-3193, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29021282

ABSTRACT

Methionine metabolism is critical for epigenetic maintenance, redox homeostasis, and animal development. However, the regulation of methionine metabolism remains unclear. Here, we provide evidence that SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, is critically involved in modulating methionine metabolism, thereby impacting maintenance of mouse embryonic stem cells (mESCs) and subsequent embryogenesis. We demonstrate that SIRT1-deficient mESCs are hypersensitive to methionine restriction/depletion-induced differentiation and apoptosis, primarily due to a reduced conversion of methionine to S-adenosylmethionine. This reduction markedly decreases methylation levels of histones, resulting in dramatic alterations in gene expression profiles. Mechanistically, we discover that the enzyme converting methionine to S-adenosylmethionine in mESCs, methionine adenosyltransferase 2a (MAT2a), is under control of Myc and SIRT1. Consistently, SIRT1 KO embryos display reduced Mat2a expression and histone methylation and are sensitive to maternal methionine restriction-induced lethality, whereas maternal methionine supplementation increases the survival of SIRT1 KO newborn mice. Our findings uncover a novel regulatory mechanism for methionine metabolism and highlight the importance of methionine metabolism in SIRT1-mediated mESC maintenance and embryonic development.


Subject(s)
Embryonic Development/genetics , Epigenesis, Genetic , Methionine Adenosyltransferase/genetics , Methionine/metabolism , Mouse Embryonic Stem Cells/metabolism , Sirtuin 1/genetics , Acetylation , Animals , Apoptosis , Cell Differentiation , Embryo, Mammalian , Histones/genetics , Histones/metabolism , Metabolomics , Methionine/administration & dosage , Methionine Adenosyltransferase/metabolism , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Mouse Embryonic Stem Cells/cytology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , S-Adenosylmethionine/metabolism , Sirtuin 1/deficiency
6.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2783-2790, 2017 11.
Article in English | MEDLINE | ID: mdl-28789977

ABSTRACT

Sirtuin 1 (SIRT1) has been reported to protect against nonalcoholic fatty liver disease (NAFLD) development. The mechanism of how SIRT1 deacetylase activity affects NAFLD has not been well investigated. The current investigation addressed the causal effect of systemic SIRT1 activity on NAFLD development and the underlying mechanism involved in both liver and mesenteric adipose tissue (MAT). Both SIRT1 homozygous mice ablated the catalytic activity (sirt1Y/Y) and their corresponding wild type littermates (WT) were fed a high fat diet (HFD, 60% calories from fat) for 34weeks. Sirt1Y/Y mice showed significantly higher level of hepatic triglyceride which was accompanied with higher levels of SREBP-1 and SCD1and decreased phosphorylation of LKB1 and AMPK in the liver. Compared with WT mice, mRNA expression of lipogenic genes (lxrα, srebp-1c, scd1 and fas) in the MAT increased significantly in sirt1Y/Y mice. Fatty acid oxidation biomarkers (acox1, acox3, cpt, ucp1, sirt3) in both liver and MAT were comparable between groups. Interestingly, we observed that in sirt1Y/Y mice, the mRNA level of hormone sensitive lipase (hsl), adipose triglyceride lipase (atgl) and perilipin-2 (plin-2), all involved in lipolysis, significantly increased in MAT, but not in epididymal adipose tissue. These changes positively correlated with circulating free fatty acid (FFA) concentrations and higher hepatic mRNA expression of cd36 for FFA uptake. The present study has provided novel evidence to suggest that under HFD-induced metabolic surplus, the lack of SIRT1 catalytic activity promotes release of FFA from MAT and escalate NAFLD by interfering with lipid homeostasis in both liver and MAT.


Subject(s)
Adipose Tissue/metabolism , Fatty Acids/metabolism , Liver/metabolism , Mesentery/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 1/metabolism , Adipose Tissue/pathology , Animals , Gene Expression Regulation , Lipogenesis , Liver/pathology , Mesentery/pathology , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Sirtuin 1/genetics
7.
PLoS One ; 12(3): e0173002, 2017.
Article in English | MEDLINE | ID: mdl-28273169

ABSTRACT

The SIRT1 protein deacetylase is reported to have a remarkably wide spectrum of biological functions affecting such varied processes as aging, cancer, metabolism, neurodegeneration and immunity. However, the SIRT1 literature is also full of contradictions. To help establish the role(s) of SIRT1 in these and other biological processes, we set out to create a mouse in which the SIRT1 activity could be toggled between on and off states by fusing the estrogen receptor ligand-binding domain (ER) to the C terminus of the SIRT1 protein. We found that the catalytic activity of the SIRT1-ER fusion protein increased 4-5 fold in cells treated with its ligand, 4-hydroxy-tamoxifen (4OHT). The 4OHT-induced activation of SIRT1-ER was due in large part to a 2 to 4-fold increase in abundance of the SIRT1-ER protein in cells in culture and in tissues in vivo. This increase is reversible and is a consequence of 4OHT-induced stabilization of the SIRT1-ER protein. Since changes in SIRT1 level or activity of 2-4 fold are frequently reported to be sufficient to affect its biological functions, this mouse should be helpful in establishing the causal relationships between SIRT1 and the diseases and processes it affects.


Subject(s)
Sirtuin 1/metabolism , Alleles , Animals , Blood Glucose/drug effects , Catalysis , Cell Line , Enzyme Activation , Female , Gene Expression , Genotype , Male , Mice , Mice, Knockout , Mice, Transgenic , Phenotype , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sirtuin 1/genetics , Tamoxifen/pharmacology
8.
Sci Rep ; 5: 12613, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26219988

ABSTRACT

Protein quality control is an important mechanism to maintain cellular homeostasis. Damaged proteins have to be restored or eliminated by degradation, which is mainly achieved by molecular chaperones and the ubiquitin-proteasome system. The NAD(+)-dependent deacetylase Sirt1 has been reported to play positive roles in the regulation of cellular homeostasis in response to various stresses. However, its contribution to protein quality control remains unexplored. Here we show that Sirt1 is involved in protein quality control in both an Hsp70-dependent and an Hsp70-independent manner. Loss of Sirt1 led to the accumulation of ubiquitinated proteins in cells and tissues, especially upon heat stress, without affecting proteasome activities. This was partly due to decreased basal expression of Hsp70. However, this accumulation was only partially alleviated by overexpression of Hsp70 or induction of Hsp70 upon heat shock in Sirt1-deficient cells and tissues. These results suggest that Sirt1 mediates both Hsp70-dependent and Hsp70-independent protein quality control. Our findings cast new light on understanding the role of Sirt1 in maintaining cellular homeostasis.


Subject(s)
Sirtuin 1/deficiency , Sirtuin 1/metabolism , Animals , Cell Line , DNA-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Homeostasis/physiology , Mice , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006015

ABSTRACT

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Subject(s)
Central Tolerance/immunology , Sirtuin 1/immunology , Transcription Factors/immunology , Transcriptional Activation/immunology , Acetylation , Animals , Antigens/immunology , Central Tolerance/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Organ Specificity/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/immunology , AIRE Protein
10.
J Biol Chem ; 290(13): 8373-82, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25631045

ABSTRACT

Parathyroid hormone (PTH) is the only current anabolic treatment for osteoporosis in the United States. PTH stimulates expression of matrix metalloproteinase 13 (MMP13) in bone. Sirtuin 1 (SIRT1), an NAD-dependent deacetylase, participates in a variety of human diseases. Here we identify a role for SIRT1 in the action of PTH in osteoblasts. We observed increased Mmp13 mRNA expression and protein levels in bone from Sirt1 knock-out mice compared with wild type mice. PTH-induced Mmp13 expression was significantly blocked by the SIRT1 activator, resveratrol, in osteoblastic UMR 106-01 cells. In contrast, the SIRT1 inhibitor, EX527, significantly enhanced PTH-induced Mmp13 expression. Two h of PTH treatment augmented SIRT1 association with c-Jun, a component of the transcription factor complex, activator protein 1 (AP-1), and promoted SIRT1 association with the AP-1 site of the Mmp13 promoter. This binding was further increased by resveratrol, implicating SIRT1 as a feedback inhibitor regulating Mmp13 transcription. The AP-1 site of the Mmp13 promoter is required for PTH stimulation of Mmp13 transcriptional activity. When the AP-1 site was mutated, EX527 was unable to increase PTH-stimulated Mmp13 promoter activity, indicating a role for the AP-1 site in SIRT1 inhibition. We further showed that SIRT1 deacetylates c-Jun and that the cAMP pathway participates in this deacetylation process. These data indicate that SIRT1 is a negative regulator of MMP13 expression, SIRT1 activation inhibits PTH stimulation of Mmp13 expression, and this regulation is mediated by SIRT1 association with c-Jun at the AP-1 site of the Mmp13 promoter.


Subject(s)
Matrix Metalloproteinase 13/metabolism , Osteoblasts/enzymology , Parathyroid Hormone/physiology , Sirtuin 1/physiology , Acetylation , Animals , Binding Sites , Enzyme Induction , Female , Femur/cytology , Femur/enzymology , Gene Expression , Male , Matrix Metalloproteinase 13/genetics , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Binding , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL