Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Hum Brain Mapp ; 45(2): e26600, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339896

ABSTRACT

Resting functional magnetic resonance imaging (fMRI) studies have identified intrinsic spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given the unique anatomical, physiological, and methodological challenges associated with acquiring the data. Here, we characterise functional connectivity relationships in the cervical cord and assess their between-session test-retest reliability in 23 young healthy volunteers. Resting-state networks were estimated in two ways (1) by estimating seed-to-voxel connectivity maps and (2) by calculating seed-to-seed correlations. Seed regions corresponded to the four grey matter horns (ventral/dorsal and left/right) of C5-C8 segmental levels. Test-retest reliability was assessed using the intraclass correlation coefficient. Spatial overlap of clusters derived from seed-to-voxel analysis between sessions was examined using Dice coefficients. Following seed-to-voxel analysis, we observed distinct unilateral dorsal and ventral organisation of cervical spinal resting-state networks that was largely confined in the rostro-caudal extent to each spinal segmental level, with more sparse connections observed between segments. Additionally, strongest correlations were observed between within-segment ipsilateral dorsal-ventral connections, followed by within-segment dorso-dorsal and ventro-ventral connections. Test-retest reliability of these networks was mixed. Reliability was poor when assessed on a voxelwise level, with more promising indications of reliability when examining the average signal within clusters. Reliability of correlation strength between seeds was highly variable, with the highest reliability achieved in ipsilateral dorsal-ventral and dorso-dorsal/ventro-ventral connectivity. However, the spatial overlap of networks between sessions was excellent. We demonstrate that while test-retest reliability of cervical spinal resting-state networks is mixed, their spatial extent is similar across sessions, suggesting that these networks are characterised by a consistent spatial representation over time.


Subject(s)
Cervical Cord , Animals , Humans , Cervical Cord/diagnostic imaging , Magnetic Resonance Imaging/methods , Reproducibility of Results , Spinal Cord/diagnostic imaging , Gray Matter , Brain/pathology
2.
Pain ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198231

ABSTRACT

ABSTRACT: In humans and animals, high-frequency electrocutaneous stimulation (HFS) induces an "early long-term potentiation-like" sensitisation, where synaptic plasticity is underpinned by an ill-defined interaction between peripheral input and central modulatory processes. The relative contributions of these processes to the initial pain or nociceptive response likely differ from those that underpin development of the heightened response. To investigate the impact of HFS-induced hyperalgesia on pain and nociception in perception and neural terms, respectively, and to explore the impact of descending inhibitory pathway activation on the development of HFS-induced hyperalgesia, we performed parallel studies utilising identical stimuli to apply HFS concurrent to (1) a conditioned pain modulation paradigm during psychophysical testing in healthy humans or (2) a diffuse noxious inhibitory controls paradigm during in vivo electrophysiological recording of spinal neurones in healthy anaesthetised rats. High-frequency electrocutaneous stimulation alone induced enhanced perceptual responses to pinprick stimuli in cutaneous areas secondary to the area of electrical stimulation in humans and increased the excitability of spinal neurones which exhibited stimulus intensity-dependent coded responses to pinprick stimulation in a manner that tracked with human psychophysics, supporting their translational validity. Application of a distant noxious conditioning stimulus during HFS did not alter perceived primary or secondary hyperalgesia in humans or the development of primary or secondary neuronal hyperexcitability in rats compared with HFS alone, suggesting that, upon HFS-response initiation in a healthy nervous system, excitatory signalling escapes inhibitory control. Therefore, in this model, dampening facilitatory mechanisms rather than augmenting top-down inhibitions could prevent pain development.

3.
Pain ; 165(4): 941-950, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37878469

ABSTRACT

ABSTRACT: The high frequency stimulation (HFS) model can be used alongside quantitative sensory testing (QST) to assess the sensitisation of central nociceptive pathways. However, the validity and between-session reliability of using QST z -score profiles to measure changes in mechanical and thermal afferent pathways in the HFS model are poorly understood. In this study, 32 healthy participants underwent QST before and after HFS (5× 100 Hz trains; 10× electrical detection threshold) in the same heterotopic skin area across 2 repeated sessions. The only mechanical QST z -score profiles that demonstrated a consistent gain of function across repeated test sessions were mechanical pain threshold (MPT) and mechanical pain sensitivity (MPS), which were associated with moderate and good reliability, respectively. There was no relationship between HFS intensity and MPT and MPS z -score profiles. There was no change in low intensity, but a consistent facilitation of high-intensity pin prick stimuli in the mechanical stimulus response function across repeated test sessions. There was no change in cold pain threshold (CPT) and heat pain threshold (HPT) z -score profiles across session 1 and 2, which were associated with moderate and good reliability, respectively. There were inconsistent changes in the sensitivity to innocuous thermal QST parameters, with cool detection threshold (CDT), warm detection threshold (WDT), and thermal sensory limen (TSL) all producing poor reliability. These data suggest that HFS-induced changes in MPS z -score profiles is a reliable way to assess experimentally induced central sensitisation and associated secondary mechanical hyperalgesia in healthy participants.


Subject(s)
Nociception , Pain Threshold , Humans , Pain Measurement , Reproducibility of Results , Pain Threshold/physiology , Pain , Hyperalgesia/diagnosis
4.
Pain ; 164(11): 2528-2539, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37289573

ABSTRACT

ABSTRACT: Chronic pelvic pain (CPP), despite its high prevalence, is still relatively poorly understood mechanistically. This study, as part of the Translational Research in Pelvic Pain (TRiPP) project, has used a full quantitative sensory testing (QST) paradigm to profile n = 85 women with and without CPP (endometriosis or bladder pain specifically). We used the foot as a control site and abdomen as the test site. Across 5 diagnostically determined subgroups, we found features which are common across different aetiologies, eg, gain of function in pressure pain threshold (PPT) when assessing responses from the lower abdomen or pelvis (referred pain site). However, disease-specific phenotypes were also identified, eg, greater mechanical allodynia in endometriosis, despite there being large heterogeneities within diagnostic groups. The most common QST sensory phenotype was mechanical hyperalgesia (>50% across all the groups). A "healthy' sensory phenotype was seen in <7% of CPP participants. Specific QST measures correlated with sensory symptoms assessed by the painDETECT questionnaire (pressure-evoked pain [painDETECT] and PPT [QST] [ r = 0.47, P < 0.001]; mechanical hyperalgesia (painDETECT) and mechanical pain sensitivity [MPS from QST] [ r = 0.38, P = 0.009]). The data suggest that participants with CPP are sensitive to both deep tissue and cutaneous inputs, suggesting that central mechanisms may be important in this cohort. We also see phenotypes such as thermal hyperalgesia, which may be the result of peripheral mechanisms, such as irritable nociceptors. This highlights the importance of stratifying patients into clinically meaningful phenotypes, which may have implications for the development of better therapeutic strategies for CPP.


Subject(s)
Chronic Pain , Endometriosis , Humans , Female , Hyperalgesia , Pain Measurement/methods , Translational Research, Biomedical , Pain Threshold/physiology , Pelvic Pain , Chronic Pain/diagnosis
5.
J Neurosci Res ; 100(11): 2055-2076, 2022 11.
Article in English | MEDLINE | ID: mdl-35916483

ABSTRACT

Cervical level spinal cord injury (SCI) can severely impact upper limb muscle function, which is typically assessed in the clinic using electromyography (EMG). Here, we established novel preclinical methodology for EMG assessments of muscle function after SCI in awake freely moving animals. Adult female rats were implanted with EMG recording electrodes in bicep muscles and received bilateral cervical (C7) contusion injuries. Forelimb muscle activity was assessed by recording maximum voluntary contractions during a grip strength task and cortical motor evoked potentials in the biceps. We demonstrate that longitudinal recordings of muscle activity in the same animal are feasible over a chronic post-injury time course and provide a sensitive method for revealing post-injury changes in muscle activity. This methodology was utilized to investigate recovery of muscle function after a novel combination therapy. Cervical contused animals received intraspinal injections of a neuroplasticity-promoting agent (lentiviral-chondroitinase ABC) plus 11 weeks of cortical epidural electrical stimulation (3 h daily, 5 days/week) and behavioral rehabilitation (15 min daily, 5 days/week). Longitudinal monitoring of voluntary and evoked muscle activity revealed significantly increased muscle activity and upper limb dexterity with the combination treatment, compared to a single treatment or no treatment. Retrograde mapping of motor neurons innervating the biceps showed a predominant distribution across spinal segments C5-C8, indicating that treatment effects were likely due to neuroplastic changes in a mixture of intact and injured motor neurons. Thus, longitudinal assessments of muscle function after SCI correlate with skilled reach and grasp performance and reveal functional benefits of a novel combination therapy.


Subject(s)
Chondroitin ABC Lyase , Spinal Cord Injuries , Animals , Chondroitin ABC Lyase/pharmacology , Female , Forelimb/innervation , Forelimb/physiology , Muscle, Skeletal , Rats , Recovery of Function/physiology , Spinal Cord Injuries/therapy , Upper Extremity
6.
Front Mol Neurosci ; 15: 909835, 2022.
Article in English | MEDLINE | ID: mdl-35694440

ABSTRACT

Well-established efficacy of botulinum neurotoxin type A (BoNT/A) in aesthetic dermatology and neuromuscular hyperactivity disorders relies on canonical interruption of acetylcholine neurotransmission at the neuromuscular junction at the site of the injection. The mechanisms and the site of activity of BoNT/A in pain, on the other hand, remain elusive. Here, we explored analgesic activity of recombinant BoNT/A1 (rBoNT/A1; IPN10260) in a mouse model of inflammatory pain to investigate the potential role of peripheral sensory afferents in this activity. After confirming analgesic efficacy of rBoNT/A1 on CFA-induced mechanical hypersensitivity in C57Bl6J mice, we used GCaMP6s to perform in vivo calcium imaging in the ipsilateral dorsal root ganglion (DRG) neurons in rBoNT/A1 vs. vehicle-treated mice at baseline and following administration of a range of mechanical and thermal stimuli. Additionally, immunohisochemical studies were performed to detect cleaved SNAP25 in the skin, DRGs and the spinal cord. Injection of CFA resulted in reduced mechanical sensitivity threshold and increased calcium fluctuations in the DRG neurons. While rBoNT/A1 reduced mechanical hypersensitivity, calcium fluctuations in the DRG of rBoNT/A1- and vehicle-treated animals were similar. Cleaved SNAP25 was largely absent in the skin and the DRG but present in the lumbar spinal cord of rBoNT/A1-treated animals. Taken together, rBoNT/A1 ameliorates mechanical hypersensitivity related to inflammation, while the signal transmission from the peripheral sensory afferents to the DRG remained unchanged. This strengthens the possibility that spinal, rather than peripheral, mechanisms play a role in the mediation of analgesic efficacy of BoNT/A in inflammatory pain.

7.
Neuron ; 110(16): 2571-2587.e13, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35705078

ABSTRACT

Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.


Subject(s)
Calcium , Sodium-Calcium Exchanger , Animals , Humans , Mice , Pain , Posterior Horn Cells , Psychophysics , Sodium-Calcium Exchanger/genetics
8.
Pain ; 163(7): e869-e881, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34561392

ABSTRACT

ABSTRACT: Nav1.7 is a promising drug target for the treatment of pain. However, there is a mismatch between the analgesia produced by Nav1.7 loss-of-function and the peripherally restricted Nav1.7 inhibitors, which may reflect a lack of understanding of the function of Nav1.7 in the transmission of nociceptive information. In the periphery, the role of Nav1.7 in transduction at nociceptive peripheral terminals has been comprehensively examined, but its role in axonal propagation in these neurons is less clearly defined. In this study, we examined the contribution of Nav1.7 to axonal propagation in nociceptors using sodium channel blockers in in vivo electrophysiological and calcium imaging recordings in mice. Using the sodium channel blocker tetrodotoxin (TTX) (1-10 µM) to inhibit Nav1.7 and other tetrodotoxin-sensitive sodium channels along the sciatic nerve, we first showed that around two-thirds of nociceptive L4 dorsal root ganglion neurons innervating the skin, but a lower proportion innervating the muscle (45%), are blocked by TTX. By contrast, nearly all large-sized cutaneous afferents (95%-100%) were blocked by axonal TTX. Many cutaneous nociceptors resistant to TTX were polymodal (57%) and capsaicin sensitive (57%). Next, we applied PF-05198007 (300 nM-1 µM) to the sciatic nerve between stimulating and recording sites to selectively block axonal Nav1.7 channels. One hundred to three hundred nanomolar PF-05198007 blocked propagation in 63% of C-fiber sensory neurons, whereas similar concentrations produced minimal block (5%) in rapidly conducting A-fiber neurons. We conclude that Nav1.7 is essential for axonal propagation in around two-thirds of nociceptive cutaneous C-fiber neurons and a lower proportion (≤45%) of nociceptive neurons innervating muscle.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Nerve Fibers, Unmyelinated , Nociceptors , Action Potentials , Animals , Ganglia, Spinal , Mice , NAV1.7 Voltage-Gated Sodium Channel/physiology , Nerve Fibers, Unmyelinated/physiology , Nociceptors/physiology , Pain , Sensory Receptor Cells , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
9.
J Physiol ; 599(23): 5243-5260, 2021 12.
Article in English | MEDLINE | ID: mdl-34647321

ABSTRACT

There is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored. Here, we sought to determine brain regions mediating ANS and descending pain control associations. Thirty participants underwent conditioned pain modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between 'pressure-only' and 'pressure + cold' stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain were acquired. Heart rate variability (HRV) was simultaneously recorded. Normalised low-frequency HRV (LF-HRVnu) and the CPM score were negatively correlated; individuals with higher LF-HRVnu during pain reported reductions in pain during CPM. PAG-ventro-medial prefrontal cortex (vmPFC) and PAG-rostral ventromedial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-vmPFC functional connectivity mediated the strength of the LF-HRVnu-CPM association. CPM response magnitude was also negatively correlated with vmPFC GM volume. Our multi-modal approach, using behavioural, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments. KEY POINTS: Heart rate variability (HRV) is associated with descending pain modulation as measured by the conditioned pain modulation protocol (CPM). There is an association between CPM scores and the functional connectivity between the periaqueductal grey (PAG) and ventro-medial prefrontal cortex (vmPFC). CPM scores are also associated with vmPFC grey matter volume. The strength of functional connectivity between the PAG and vmPFC mediates the association between HRV and CPM. Our data provide new evidence of interactions between the autonomic nervous system and descending pain mechanisms.


Subject(s)
Magnetic Resonance Imaging , Periaqueductal Gray , Autonomic Nervous System , Humans , Neural Pathways , Pain/etiology
10.
Sci Transl Med ; 13(608)2021 08 25.
Article in English | MEDLINE | ID: mdl-34433642

ABSTRACT

Chronic pain remains a leading cause of disability worldwide, and there is still a clinical reliance on opioids despite the medical side effects associated with their use and societal impacts associated with their abuse. An alternative approach is the use of electrical neuromodulation to produce analgesia. Direct current can block action potential propagation but leads to tissue damage if maintained. We have developed a form of ultra low frequency (ULF) biphasic current and studied its effects. In anesthetized rats, this waveform produced a rapidly developing and completely reversible conduction block in >85% of spinal sensory nerve fibers excited by peripheral stimulation. Sustained ULF currents at lower amplitudes led to a slower onset but reversible conduction block. Similar changes were seen in an animal model of neuropathic pain, where ULF waveforms blocked sensory neuron ectopic activity, known to be an important driver of clinical neuropathic pain. Using a computational model, we showed that prolonged ULF currents could induce accumulation of extracellular potassium, accounting for the slowly developing block observed in rats. Last, we tested the analgesic effects of epidural ULF currents in 20 subjects with chronic leg and back pain. Pain ratings improved by 90% after 2 weeks. One week after explanting the electrodes, pain ratings reverted to 72% of pretreatment screening value. We conclude that epidural spinal ULF neuromodulation represents a promising therapy for treating chronic pain.


Subject(s)
Chronic Pain , Neuralgia , Action Potentials , Animals , Chronic Pain/therapy , Neuralgia/therapy , Rats , Spinal Nerves
11.
Pain ; 162(9): 2349-2365, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448751

ABSTRACT

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Subject(s)
Cystitis, Interstitial , Endometriosis , Cystitis, Interstitial/therapy , Female , Humans , Pelvic Pain/therapy , Reproducibility of Results , Translational Research, Biomedical
12.
JAMA Netw Open ; 4(7): e2116853, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34255048

ABSTRACT

Importance: Self-harm is a risk factor for suicide in adolescents, with the prevalence highest in young people in group and residential care programs. Although no established risk factors for self-harm exist, adolescents who self-harm may have decreased pain sensitivity, but this has not been systematically investigated. Objective: To assess somatosensory function using quantitative sensory testing (QST) in children and adolescents living in care grouped by the number of episodes of self-harm in the past year and compare their somatosensory profiles with community control participants to investigate associations with the incidence or frequency of self-harm. Design, Setting, and Participants: Recruitment for this cross-sectional study began January 2019 and ended March 2020. Exclusion criteria included intellectual disability (intelligence quotient <70), autism spectrum disorder, or recent serious injury. Children and adolescents aged 12 to 17 years with no underlying health conditions were recruited from local authority residential care settings in Glasgow, UK, and schools and youth groups in London and Glasgow, UK. The volunteer sample of 64 participants included adolescents ages 13 to 17 years (34 [53%] females; 50 [78%] living in residential care; mean [SD] age, 16.34 [1.01] years) with varying incidents of self-harm in the past year (no episodes, 31 [48%]; 1-4 episodes, 12 [19%]; and ≥5 episodes, 2 [33%]). Exposures: Participants were tested using a standardized QST protocol to establish baseline somatosensory function. Main Outcomes and Measures: Associations between somatosensory sensitivity, incidence and frequency of self-harm, residential status, age, gender, and prescription medication were calculated. Secondary outcomes assessed whether self-harm was associated with specific types of tests (ie, painful or nonpainful). Results: A total of 64 participants ages 13 to 17 years completed testing (mean [SD] age, 16.3 [1.0] years; 34 [53%.] females and 30 [47%] males; 50 [78%] living in group homes). Adolescents with 5 or more self-harm incidences showed significant pain hyposensitivity compared with community control participants after adjusting for age, gender, and prescription drug use (SH group with 5 or more episodes vs control: -1.03 [95% CI, -1.47 to -0.60]; P < .001). Hyposensitivity also extended to nonpainful stimuli, similarly adjusted (SH group with 5 or more episodes vs control: -1.73; 95% CI, -2.62 to -0.84; P < .001). Pressure pain threshold accounted for most of the observed variance (31.1% [95% CI, 10.5% to 44.7%]; P < .001). Conclusions and Relevance: The findings of this study suggest that sensory hyposensitivity is a phenotype of Adolescents who self-harm and that pressure pain threshold has clinical potential as a quick, inexpensive, and easily interpreted test to identify adolescents at increased risk of repeated self-harm.


Subject(s)
Pain Threshold/psychology , Self-Injurious Behavior/epidemiology , Self-Injurious Behavior/psychology , Somatosensory Disorders/epidemiology , Somatosensory Disorders/psychology , Adolescent , Child , Cross-Sectional Studies , Female , Group Homes , Humans , Incidence , Male , Pain Perception , Phenotype , Risk Factors , Sensory Thresholds , United Kingdom/epidemiology
13.
Nat Rev Neurosci ; 22(5): 263-274, 2021 05.
Article in English | MEDLINE | ID: mdl-33782571

ABSTRACT

Evidence from human genetic pain disorders shows that voltage-gated sodium channel α-subtypes Nav1.7, Nav1.8 and Nav1.9 are important in the peripheral signalling of pain. Nav1.7 is of particular interest because individuals with Nav1.7 loss-of-function mutations are congenitally insensitive to acute and chronic pain, and there is considerable hope that phenocopying these effects with a pharmacological antagonist will produce a new class of analgesic drug. However, studies in these rare individuals do not reveal how and where voltage-gated sodium channels contribute to pain signalling, which is of critical importance for drug development. More than a decade of research utilizing rodent genetic models and pharmacological tools to study voltage-gated sodium channels in pain has begun to unravel the role of different subtypes. Here, we review the contribution of individual channel subtypes in three key physiological processes necessary for transmission of sensory information to the CNS: transduction of stimuli at peripheral nerve terminals, axonal transmission of action potentials and neurotransmitter release from central terminals. These data suggest that drugs seeking to recapitulate the analgesic effects of loss of function of Nav1.7 will need to be brain-penetrant - which most of those developed to date are not.


Subject(s)
Pain/physiopathology , Voltage-Gated Sodium Channels , Animals , Humans , NAV1.7 Voltage-Gated Sodium Channel/genetics , Voltage-Gated Sodium Channels/genetics
14.
Pain ; 162(9): 2405-2417, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33769365

ABSTRACT

ABSTRACT: Lamina I of the dorsal horn, together with its main output pathway, lamina I projection neurons, has long been implicated in the processing of nociceptive stimuli, as well as the development of chronic pain conditions. However, the study of lamina I projection neurons is hampered by technical challenges, including the low throughput and selection biases of traditional electrophysiological techniques. Here we report on a technique that uses anatomical labelling strategies and in vivo imaging to simultaneously study a network of lamina I projection neurons in response to electrical and natural stimuli. Although we were able to confirm the nociceptive involvement of this group of cells, we also describe an unexpected preference for innocuous cooling stimuli. We were able to characterize the thermal responsiveness of these cells in detail and found cooling responses decline when exposed to stable cold temperatures maintained for more than a few seconds, as well as to encode the intensity of the end temperature, while heating responses showed an unexpected reliance on adaptation temperatures.


Subject(s)
Skin , Spinal Cord Dorsal Horn , Cold Temperature , Interneurons , Spinal Cord
15.
Eur J Pain ; 25(2): 415-429, 2021 02.
Article in English | MEDLINE | ID: mdl-33065759

ABSTRACT

BACKGROUND: Reporting in conditioned pain modulation (CPM) studies is not standardised. Here, two CPM protocols were performed in populations of healthy human subjects in order to investigate the influence of the CPM paradigm and stringent analyses parameters on the identification of a net CPM effect. METHODS: A standard thermal or mechanical CPM protocol was carried out on 25 and 17 subjects, respectively. The standard error of measurement (SEM) of the CPM effect was calculated in order to determine a change in pain thresholds greater than that due to measurement error or 'real' change in test scores. In addition, each individual underwent a minimum of two control CPM sessions, which were paired with the CPM test sessions. To quantify a net CPM effect, the intrasession difference between baseline and conditioning was subtracted from the difference calculated at the same time points during the control session. RESULTS: For both protocols, excellent reliability for intrasession repeats of the test stimulus at baseline was demonstrated for thermal and mechanical stimulation (ICC > 0.9). Test-retest subject responses (in terms of experimental Session 1 versus. Session 2) showed excellent reliability for mechanical (ICC > 0.8), compared to thermal stimulation, which ranged from poor to moderate (ICC < 0.4->0.75). However, calculating the net CPM effect using control session data demonstrated poor-fair reliability for both protocols (ICC < 0.4-0.59). CONCLUSION: Calculating the net CPM effect should be optimised and standardised for comparison of CPM data collected from global research groups. Recommendation is made for the performance of a multicentre, test-retest study.


Subject(s)
Conditioning, Psychological , Pain Threshold , Healthy Volunteers , Humans , Pain , Pain Measurement , Reproducibility of Results
16.
Curr Med Res Opin ; 37(2): 287-292, 2021 02.
Article in English | MEDLINE | ID: mdl-33155849

ABSTRACT

This document presents the conclusions of a detailed discussion on the role of topical NSAIDs during a round table Global Pain Faculty meeting held in Amsterdam in 2019 and subsequent discussions online. The aim of this evidence-based document is to describe the impact of musculoskeletal pain both in terms of the large numbers of sufferers and its economic impact. The document considers the place of topical therapies alongside other pharmacological and non-pharmacological treatments and presents the evidence for the benefits and harms of topical NSAIDS including indicators of efficacy for three main topical NSAIDs- diclofenac, ibuprofen and ketoprofen - based on almost 15,000 participants in randomized controlled trials for acute and chronic musculoskeletal pain. These topical NSAIDs have the largest body of evidence. For acute pain, numbers needed to treat to achieve at least 50% reduction in pain are as follows with 95% confidence intervals in brackets: Diclofenac emulgel 1.8(1.5-2.1) (5170 participants), Ibuprofen gel 2.7 (1.7-4.2) (436 participants), Ketoprofen gel 2.2 (1.7-2.8) (683 participants). For chronic pain, the NNTs are Diclofenac any formulation 9.5(7-14) (5995 participants). Ketoprofen 6.9(5.5-9.3) (2573 participants). Randomized controlled trial evidence suggests that adverse events for active topical NSAIDs are similar to placebo. Finally the gaps in knowledge are considered with suggestions on how further research might help. The global pain faculty was brought together by GSK under an unrestricted educational grant.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Internationality , Musculoskeletal Pain/drug therapy , Musculoskeletal Pain/epidemiology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Humans , Pharmaceutical Preparations
17.
Front Neurosci ; 14: 147, 2020.
Article in English | MEDLINE | ID: mdl-33041747

ABSTRACT

There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants' pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants' subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems.

18.
Neurotherapeutics ; 17(4): 1973-1987, 2020 10.
Article in English | MEDLINE | ID: mdl-32632772

ABSTRACT

Single-pulse transcranial magnetic stimulation (sTMS) of the occipital cortex is an effective migraine treatment. However, its mechanism of action and cortical effects of sTMS in migraine are yet to be elucidated. Using calcium imaging and GCaMP-expressing mice, sTMS did not depolarise neurons and had no effect on vascular tone. Pre-treatment with sTMS, however, significantly affected some characteristics of the cortical spreading depression (CSD) wave, the correlate of migraine aura. sTMS inhibited spontaneous neuronal firing in the visual cortex in a dose-dependent manner and attenuated L-glutamate-evoked firing, but not in the presence of GABAA/B antagonists. In the CSD model, sTMS increased the CSD electrical threshold, but not in the presence of GABAA/B antagonists. We first report here that sTMS at intensities similar to those used in the treatment of migraine, unlike traditional sTMS applied in other neurological fields, does not excite cortical neurons but it reduces spontaneous cortical neuronal activity and suppresses the migraine aura biological substrate, potentially by interacting with GABAergic circuits.


Subject(s)
Migraine Disorders/physiopathology , Migraine Disorders/therapy , Occipital Lobe/physiopathology , Transcranial Magnetic Stimulation/methods , Animals , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Female , Glutamic Acid/toxicity , Iontophoresis/methods , Male , Mice , Mice, Inbred C57BL , Migraine Disorders/chemically induced , Occipital Lobe/drug effects , Rats , Rats, Sprague-Dawley
19.
Pain ; 161(8): 1894-1905, 2020 08.
Article in English | MEDLINE | ID: mdl-32701848

ABSTRACT

Skeletal metastases are frequently accompanied by chronic pain that is mechanoceptive in nature. Mechanistically, cancer-induced bone pain (CIBP) is mediated by peripheral sensory neurons innervating the cancerous site, the cell bodies of which are housed in the dorsal root ganglia (DRG). How these somatosensory neurons encode sensory information in CIBP remains only partly explained. Using a validated rat model, we first confirmed cortical bone destruction in CIBP but not sham-operated rats (day 14 after surgery, designated "late"-stage bone cancer). This occurred with behavioural mechanical hypersensitivity (Kruskal-Wallis H for independent samples; CIBP vs sham-operated, day 14; P < 0.0001). Next, hypothesising that the proportion and phenotype of primary afferents would be altered in the disease state, dorsal root ganglia in vivo imaging of genetically encoded calcium indicators and Markov Cluster Analysis were used to analyse 1748 late-stage CIBP (n = 10) and 757 sham-operated (n = 9), neurons. Distinct clusters of responses to peripheral stimuli were revealed. In CIBP rats, upon knee compression of the leg ipsilateral to the tumour, (1) 3 times as many sensory afferents responded (repeated-measures analysis of variance: P < 0.0001 [vs sham]); (2) there were significantly more small neurons responding (Kruskal-Wallis for independent samples (vs sham): P < 0.0001); and (3) approximately 13% of traced tibial cavity afferents responded (no difference observed between CIBP and sham-operated animals). We conclude that an increased sensory afferent response is present in CIBP rats, and this is likely to reflect afferent recruitment from outside of the bone rather than increased intraosseous afferent activity.


Subject(s)
Bone Neoplasms , Animals , Bone Neoplasms/complications , Female , Ganglia, Spinal , Male , Rats , Rats, Sprague-Dawley
20.
Neuroimage ; 221: 117178, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32707236

ABSTRACT

Functional neuroimaging techniques have provided great insight in the field of pain. Utilising these techniques, we have characterised pain-induced responses in the brain and improved our understanding of key pain-related phenomena. Despite the utility of these methods, there remains a need to assess the test retest reliability of pain modulated blood-oxygen-level-dependant (BOLD) MR signal across repeated sessions. This is especially the case for more novel yet increasingly implemented stimulation modalities, such as noxious pressure, and it is acutely important for multi-session studies considering treatment efficacy. In the present investigation, BOLD signal responses were estimated for noxious-pressure stimulation in a group of healthy participants, across two separate sessions. Test retest reliability of functional magnetic resonance imaging (fMRI) data and self-reported visual analogue scale measures were determined by the intra-class correlation coefficient. High levels of reliability were observed in several key brain regions known to underpin the pain experience, including in the thalamus, insula, somatosensory cortices, and inferior frontal regions, alongside "excellent" reliability of self-reported pain measures. These data demonstrate that BOLD-fMRI derived signals are a valuable tool for quantifying noxious responses pertaining to pressure stimulation. We further recommend the implementation of pressure as a stimulation modality in experimental applications.


Subject(s)
Brain Mapping/standards , Brain/physiology , Magnetic Resonance Imaging/standards , Nociception/physiology , Pain/physiopathology , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Pain/diagnostic imaging , Pain Measurement , Pressure , Reproducibility of Results , Self Report , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...