Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 14(9): 2059-2067, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26923601

ABSTRACT

Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.


Subject(s)
Arginine Kinase/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Creatine Kinase/physiology , Longevity , Ribosomal Protein S6 Kinases, 70-kDa/physiology , AMP-Activated Protein Kinases/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Enzyme Activation , Female , Male , Mice, Knockout , Neuroglia/enzymology , Protein Serine-Threonine Kinases/metabolism
2.
Nat Commun ; 4: 2267, 2013.
Article in English | MEDLINE | ID: mdl-23925298

ABSTRACT

Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Longevity , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , Diet , Female , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Animal , Mutation/genetics , Sequence Homology, Amino Acid
3.
J Gerontol A Biol Sci Med Sci ; 68(4): 359-67, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22904097

ABSTRACT

Bivalve species with exceptional longevity are newly introduced model systems in biogerontology to test evolutionarily conserved mechanisms of aging. Here, we tested predictions based on the oxidative stress hypothesis of aging using one of the tropical long-lived sessile giant clam species, the smooth giant clam (Tridacna derasa; predicted maximum life span: >100 years) and the short-lived Atlantic bay scallop (Argopecten irradians irradians; maximum life span: 2 years). The warm water-dwelling giant clams warrant attention because they challenge the commonly held view that the exceptional longevity of bivalves is a consequence of the cold water they reside in. No significant interspecific differences in production of H2O2 and O2- in the gills, heart, or adductor muscle were observed. Protein carbonyl content in gill and muscle tissues were similar in T derasa and A i irradians. In tissues of T derasa, neither basal antioxidant capacities nor superoxide dismutase and catalase activities were consistently greater than in A i irradians. We observed a positive association between longevity and resistance to mortality induced by exposure to tert-butyl hydroperoxide (TBHP). This finding is consistent with the prediction based on the oxidative stress hypothesis of aging. The findings that in tissues of T derasa, proteasome activities are significantly increased as compared with those in tissues of A i irradians warrant further studies to test the role of enhanced protein recycling activities in longevity of bivalves.


Subject(s)
Aging/physiology , Longevity/physiology , Oxidative Stress/physiology , Protein Carbonylation , tert-Butylhydroperoxide/pharmacology , Animals , Antioxidants/metabolism , Biological Evolution , Bivalvia , Catalase/metabolism , Free Radical Scavengers/metabolism , Hydrogen Peroxide/metabolism , Life Expectancy , Models, Biological , Seawater , Species Specificity , Superoxide Dismutase/metabolism , Temperature , Tissue Survival/physiology
4.
Mol Cell ; 35(5): 586-97, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19748355

ABSTRACT

The COP9 signalosome (CSN) is thought to maintain the stability of cullin-RING ubiquitin ligases (CRL) by limiting the autocatalytic destruction of substrate adapters such as F box proteins (FBPs). CAND1, a protein associated with unneddylated CUL1, was proposed to assist in this role in an as yet unclear fashion. We found that only a subset of Schizosaccharomyces pombe FBPs, which feature a critical F box proline that promotes their interaction with CUL1, required CSN for stability. Unlike the CRL3 adaptor Btb3p, none of the CSN-sensitive FBPs were affected by deletion of ubp12. Contrary to current models, CAND1 does not control adaptor stability but maintains the cellular balance of CRL1 complexes by preventing rare FBPs from being outcompeted for binding to CUL1 by more ample adapters. These findings were integrated into a refined model of CRL control in which substrate availability toggles CRLs between independent CSN and CAND1 cycles.


Subject(s)
Cullin Proteins/metabolism , F-Box Proteins/metabolism , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Amino Acid Sequence , CDC2 Protein Kinase/metabolism , COP9 Signalosome Complex , Conserved Sequence , Cullin Proteins/chemistry , Cullin Proteins/genetics , Endopeptidases/metabolism , F-Box Proteins/chemistry , F-Box Proteins/genetics , Metalloproteases/metabolism , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/genetics , Mutation , Peptide Hydrolases/genetics , Proline , Protein Binding , Protein Stability , SKP Cullin F-Box Protein Ligases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Time Factors , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL