Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(16): 18113-18118, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680304

ABSTRACT

The Plectranthus genus (Lamiaceae) is known to be rich in abietane diterpenes. The bioactive 6,7-dehydroxyroyleanone (DHR, 1) was previously isolated from Plectranthus madagascariensis var. madagascariensis and var. aliciae. This study aimed to explore the occurrence of DHR, 1, in P. aliciae and the potential bioactivities of new semisynthetic derivatives from DHR, 1. Several extraction methods were evaluated, and the hydrodistillation, using a Clevenger apparatus, afforded the highest yield (77.8 mg/g of 1 in the essential oil). Three new acyl derivatives (2-4) were successfully prepared from 1 (yields of 86-95%). Compounds 1-4 showed antioxidant activity, antibacterial effects, potent cytotoxic activity against several cell lines, and enhanced anti-inflammatory activity that surpassed dexamethasone (positive control). These findings encourage further exploration of derivatives 2-4 for potential mechanisms of antitumoral, antioxidant, and anti-inflammatory capabilities, studying both safety and efficacy.

2.
Foods ; 12(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37174463

ABSTRACT

The efficiency of natural olive pomace extracts for enhancing the quality of fresh-cut apples was compared with commercial ascorbic acid and two different packaging films (biodegradable polylactic acid (PLA) and oriented polypropylene (OPP)) were tested. The composition of atmosphere inside the packages, the physicochemical parameters (firmness, weight loss and color), the microbial load, total phenolic content and antioxidant activity of fresh-cut apples were evaluated throughout 12 days of storage at 4 °C. After 12 days of refrigerated storage, a significant decrease in O2 was promoted in PLA films, and the weight loss of the whole packaging was higher in PLA films (5.4%) than in OPP films (0.2%). Natural olive pomace extracts reduced the load of mesophilic bacteria (3.4 ± 0.1 log CFU/g and 2.4 ± 0.1 log CFU/g for OPP and PLA films, respectively) and filamentous fungi (3.3 ± 0.1 log CFU/g and 2.44 ± 0.05 log CFU/g for OPP and PLA films, respectively) growth in fresh-cut apples after five days of storage at 4 °C, and no detection of coliforms was verified throughout the 12 days of storage. In general, the olive pomace extract preserved or improved the total phenolic index and antioxidant potential of the fruit, without significant changes in their firmness. Moreover, this extract seemed to be more effective when combined with the biodegradable PLA film packaging. This work can contribute to the availability of effective natural food additives, the sustainability of the olive oil industries and the reduction of environmental impact. It can also be useful in meeting the food industries requirements to develop new functional food products.

3.
Food Chem ; 384: 132462, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35193018

ABSTRACT

The application of bioactive extracts from Cichorium intybus L. and Plantago coronopus L. species were incorporated as a functional ingredient in fresh egg pasta (Fettuccine). In that sense, a pasta making procedure was accessed using different concentrations of the plant extracts (0.25-0.63 mg/g), drying times (20-420 min) and drying temperatures (40-90 °C; only for P. coronopus enriched pasta), to screen an optimal factor selection in the pasta making procedure and to enhance the bioactive properties of the final product. In the chemical characterisation of the plant extracts, twenty-five phenolic compounds were tentatively identified (twenty compounds belonging to phenolic acid and phenylpropanoid classes and five belonging to the flavonoid sub-class) and a strong synergy between the plant extract concentration and the drying time was showed. The analysed antioxidant properties were enhanced by the phenolic compounds of the extracts and a new functional food with higher bioactive quality was developed.


Subject(s)
Cichorium intybus , Plantago , Antioxidants/analysis , Cichorium intybus/chemistry , Phenols/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Plantago/metabolism , Triticum/metabolism
4.
Foods ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810113

ABSTRACT

In the present work, sage (Salvia officinalis L.) and basil (Ocimum basilicum L.) were exploited for their preservative purposes, as viable alternatives to artificial ones. The ultrasound-assisted extraction (UAE) of bioactive compounds was pre-optimized using factorial screening analysis, prior to applying response surface methodology (RSM). The obtained extracts were characterized in terms of phenolic compounds by high-performance liquid chromatography coupled to photodiode array detector and mass spectrometer HPLC-DAD-ESI/MS and bioactivities, namely the antioxidant, antimicrobial and cytotoxic potential. In addition, the most promising extracts were incorporated into yogurts, that were further screened for nutritional and physico-chemical properties and microbial load, over a shelf life of 14 days. According to the obtained results, the solvent percentage is the most relevant factor for obtaining rosmarinic acid-rich extract, followed by the extraction time and ultrasonic power. For the antioxidant and antimicrobial activity, sage showed the best result for both analysis and none of the two plant extracts were hepatotoxic. Finally, both extracts did not show changes in the physicochemical and nutritional characteristics of the yogurts and did not interfere with the growth of lactic acid bacteria, an important microorganism during yogurt fermentation. These results highlight the high potential of sage and basil as natural preservatives.

5.
Foods ; 10(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467492

ABSTRACT

Muffins are snacks made from flour and chocolate and preserved with synthetic additives. Following consumer trends, the search for natural food additives has gained traction. Plants such as rosemary, lemon balm, and oregano were analyzed following an optimization of ultrasound assisted extraction, screened for their antioxidant and antimicrobial activity and incorporated in chocolate muffins, comparing them to synthetic preservatives over the course of 8 days. The nutritional profile, organic and fatty acids, soluble sugars, texture profile, external color and digital imaging of the muffin pores were analyzed. Slight changes were sought for the muffins incorporated with the natural extracts. By means of linear discriminant analysis, rosemary extract was considered the most promising extract to preserve the muffins due to its similarity to potassium sorbate, showing no changes in the muffins it was incorporated in, although it showed a lower amount of phenolic compounds when compared to lemon balm.

6.
Molecules ; 24(19)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597259

ABSTRACT

Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of bioactive compounds, peels from Opuntia engelmannii cultivar (cv.) Valencia were optimized by response surface methodology. Randomized extraction runs were performed for each of the technologies employed in order to build effective models with maximum (bioactive molecules content and yield) and minimum (antioxidant activity) responses. A 5-level, 4-factor central composite design was used to obtain target responses as a function of extraction time (t), solid to liquid ratio (S/L), methanol concentration (metOH), and temperature (T). Specific response optimization for each technology was analyzed, discussed, and general optimization from all the responses together was also gather. The optimum values for each factor were: t = 2.5 and 1.4 min, S/L = 5 and 5 g/L, metOH = 34.6 and 0% of methanol and T = 30 and 36.6 °C, achieving maximum responses of 201.6 and 132.9 mg of betalains/g, 13.9 and 8.0 mg of phenolic acids/g, 2.4 and 1.5 mg of flavonoids/g, 71.8% and 79.1% of extractable solid and IC50 values for the antioxidant activity of 2.9 and 3.6, for UAE and MAE, respectively. The present study suggested UAE as the best extraction system, in order to maximize recovery of bioactive compounds with a high antioxidant activity.


Subject(s)
Fruit/chemistry , Microwaves , Opuntia/chemistry , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Ultrasonic Waves , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Betacyanins/chemistry , Betacyanins/isolation & purification , Chemical Fractionation/methods , Chromatography, High Pressure Liquid , Flavonoids , Molecular Weight , Phenols , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Solvents
7.
Food Res Int ; 101: 259-265, 2017 11.
Article in English | MEDLINE | ID: mdl-28941692

ABSTRACT

Consumer interest in the use of natural ingredients is creating a growing trend in the food industry, leading to research into the development of natural products such as colorants, antimicrobials and antioxidant compounds. This work involves an extensive morphological (using physico-chemical assays), chemical (antioxidant activity assays) and microbiological (Gram-positive and negative strains) characterization of prickly peras (Opuntia ficus-indica (OFI) var. sanguigna, gialla and Opuntia engelmannii) fruits. Through chromatographic assays, these species have shown interesting contents of hydrophilic (sugars, organic acids and betalains) and lipophilic (tocopherols and fatty acids) compounds. While Opuntia engelmannii exhibited higher content of betacyanins and mucilage, OFI varieties sanguigna and gialla displayed greater organic acid content. The sanguigna variety also showed the highest α-tocopherol content. All this compounds could be the responsible of enhancing the bioactivity of this variety, which can be observed in its antimicrobial potential, tested in the studied strains too. Results revealed that Opuntia spp. could be used as a nutraceutical and/or food additive, maintaining and promoting health and life quality.


Subject(s)
Food Ingredients , Fruit/chemistry , Opuntia/chemistry , Plant Extracts/analysis , Anti-Infective Agents/analysis , Antioxidants/analysis , Betacyanins/analysis , Betalains/analysis , Betalains/pharmacology , Color , Fatty Acids/analysis , Food Industry , Tocopherols/analysis
8.
BMC Genomics ; 16: 537, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26194190

ABSTRACT

BACKGROUND: Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. RESULTS: We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12 °C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 (Thr108)) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. CONCLUSIONS: In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.


Subject(s)
Evolution, Molecular , Membrane Glycoproteins/genetics , Wine , Fermentation , Inositol/genetics , Inositol/metabolism , Metabolic Engineering , Temperature , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL