Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Mol Metab ; 87: 101981, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971403

ABSTRACT

OBJECTIVE: The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS: The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS: OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS: Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.

2.
Ann Rheum Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38777374

ABSTRACT

B cells have a pivotal function in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus. In autoimmune disease, B cells orchestrate antigen presentation, cytokine production and autoantibody production, the latter via their differentiation into antibody-secreting plasmablasts and plasma cells. This article addresses the current therapeutic strategies to deplete B cells in order to ameliorate or potentially even cure autoimmune disease. It addresses the main target antigens in the B-cell lineage that are used for therapeutic approaches. Furthermore, it summarises the current evidence for successful treatment of autoimmune disease with monoclonal antibodies targeting B cells and the limitations and challenges of these approaches. Finally, the concept of deep B-cell depletion and immunological reset by chimeric antigen receptor T cells is discussed, as well as the lessons from this approach for better understanding the role of B cells in autoimmune disease.

3.
J Proteome Res ; 23(5): 1615-1633, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38649144

ABSTRACT

Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.


Subject(s)
Autophagy , B-Lymphocytes , Glycerophospholipids , Lysosomes , Animals , Mice , B-Lymphocytes/metabolism , Glycerophospholipids/metabolism , Lipid Metabolism , Lipidomics/methods , Lysosomes/metabolism , Mitochondria/metabolism , Proteomics/methods
4.
Cell Rep ; 43(2): 113739, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38340319

ABSTRACT

Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.


Subject(s)
B-Lymphocytes , Immunity, Humoral , Animals , Mice , Glucose , Glucose Transporter Type 1 , Plasma Cells
5.
Gut ; 73(4): 601-612, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38176897

ABSTRACT

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Intraepithelial Lymphocytes , Humans , Animals , Intraepithelial Lymphocytes/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colitis/metabolism , Inflammation/metabolism , Butyrates , Intestinal Mucosa/metabolism , Dextran Sulfate , Disease Models, Animal
6.
Sci Immunol ; 9(91): eadj5948, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215192

ABSTRACT

Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.


Subject(s)
Hypergammaglobulinemia , Lymphoproliferative Disorders , Humans , Apoptosis/genetics , Germinal Center , Lymphoproliferative Disorders/genetics , TOR Serine-Threonine Kinases
7.
Front Immunol ; 13: 979491, 2022.
Article in English | MEDLINE | ID: mdl-36091065

ABSTRACT

Hookworms infect more that 400 million people and cause significant socio-economic burden on endemic countries. The lack of efficient vaccines and the emergence of anthelminthic drug resistance are of major concern. Free-living hookworm larvae infect their hosts via the skin and live as adult worms in the small intestine where they feed on host tissue and blood. Excretory/secretory (E/S) products, released by helminths as they migrate through their host, are thought to play a key role in facilitating infection and successful establishment of parasitism. However, E/S products can also elicit protective immune responses that might be harnessed for vaccine development. By performing Western blots with serum of Nippostrongylus brasiliensis (Nb) infected mice as a model for human hookworm infection, we identified a largely overlapping set of IgG1- and IgE-reactive antigens in E/S from infective L3 stage larvae. Mass spectrometry analysis led to the identification of a new protein family with 6 paralogues in the Nb genome which we termed Nb-LSA1 for "Nippostrongylus brasiliensis larval secreted protein 1". The recombinantly expressed 17 kDa family member Nb-LSA1a was recognized by antibodies in the serum of Nb immune mice. Immunization of mice with Nb-LSA1a in alum elicited a strong IgG1 response but no detectable antigen-specific IgE. Most importantly, immunized mice were largely protected against a challenge Nb infection. This effect was dependent on the presence of basophils and occurred before the parasites reached the intestine. Therefore, basophils appear to play a critical role for rapid control of infection with L3 stage larvae in mice immunized with a single secreted larval protein. A better understanding of basophil-mediated protective immunity and identification of potent larval antigens of human hookworms could help to develop promising vaccination strategies.


Subject(s)
Antigens, Helminth , Basophils , Ancylostomatoidea , Animals , Humans , Immunoglobulin E , Immunoglobulin G , Larva , Mice , Nippostrongylus
8.
Cell Rep ; 39(10): 110912, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675769

ABSTRACT

To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.


Subject(s)
Citric Acid Cycle , Immunity, Humoral , Animals , B-Lymphocytes , DNA, Mitochondrial/metabolism , Glycolysis/genetics , Lipopolysaccharides/metabolism , Mice , Respiration
9.
Mucosal Immunol ; 15(4): 668-682, 2022 04.
Article in English | MEDLINE | ID: mdl-35347229

ABSTRACT

Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, ß7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.


Subject(s)
Immunoglobulin A , Kruppel-Like Transcription Factors , Peyer's Patches , Plasma Cells , Animals , Flagellin , Immunoglobulin A/metabolism , Intestinal Mucosa , Kruppel-Like Transcription Factors/genetics , Mice
10.
Eur J Immunol ; 52(6): 970-977, 2022 06.
Article in English | MEDLINE | ID: mdl-35253229

ABSTRACT

Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
11.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Article in English | MEDLINE | ID: mdl-34355795

ABSTRACT

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mice , SARS-CoV-2
12.
Arthritis Rheumatol ; 74(1): 33-37, 2022 01.
Article in English | MEDLINE | ID: mdl-34196506

ABSTRACT

OBJECTIVE: B cell depletion is an established therapeutic principle in a wide range of autoimmune diseases. However, B cells are also critical for inducing protective immunity after infection and vaccination. We undertook this study to assess humoral and cellular immune responses after infection with or vaccination against SARS-CoV-2 in patients with B cell depletion and controls who are B cell-competent. METHODS: Antibody responses (tested using enzyme-linked immunosorbent assay) and T cell responses (tested using interferon-γ enzyme-linked immunospot assay) against the SARS-CoV-2 spike S1 and nucleocapsid proteins were assessed in a limited number of previously infected (n = 6) and vaccinated (n = 8) autoimmune disease patients with B cell depletion, as well as previously infected (n = 30) and vaccinated (n = 30) healthy controls. RESULTS: As expected, B cell and T cell responses to the nucleocapsid protein were observed only after infection, while respective responses to SARS-CoV-2 spike S1 were found after both infection and vaccination. A SARS-CoV-2 antibody response was observed in all vaccinated controls (30 of 30 [100%]) but in none of the vaccinated patients with B cell depletion (0 of 8). In contrast, after SARS-CoV-2 infection, both the patients with B cell depletion (spike S1, 5 of 6 [83%]; nucleocapsid, 3 of 6 [50%]) and healthy controls (spike S1, 28 of 30 [93%]; nucleocapsid, 28 of 30 [93%]) developed antibodies. T cell responses against the spike S1 and nucleocapsid proteins were found in both infected and vaccinated patients with B cell depletion and in the controls. CONCLUSION: These data show that B cell depletion completely blocks humoral but not T cell SARS-CoV-2 vaccination response. Furthermore, limited humoral immune responses are found after SARS-CoV-2 infection in patients with B cell depletion.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lymphocyte Depletion/adverse effects , SARS-CoV-2/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/virology , COVID-19/prevention & control , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology
13.
Front Immunol ; 13: 991347, 2022.
Article in English | MEDLINE | ID: mdl-36591274

ABSTRACT

We have previously shown that the microRNA (miRNA) processor complex consisting of the RNAse Drosha and the DiGeorge Critical Region (DGCR) 8 protein is essential for B cell maturation. To determine whether miRNA processing is required to initiate T cell-mediated antibody responses, we deleted DGCR8 in maturing B2 cells by crossing a mouse with loxP-flanked DGCR8 alleles with a CD23-Cre mouse. As expected, non-immunized mice showed reduced numbers of mature B2 cells and IgG-secreting cells and diminished serum IgG titers. In accordance, germinal centers and antigen-specific IgG-secreting cells were absent in mice immunized with T-dependent antigens. Therefore, DGCR8 is required to mount an efficient T-dependent antibody response. However, DGCR8 deletion in B1 cells was incomplete, resulting in unaltered B1 cell numbers and normal IgM and IgA titers in DGCR8-knock-out mice. Therefore, this mouse model could be used to analyze B1 responses in the absence of functional B2 cells.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism , Germinal Center/metabolism , Immunoglobulin G/metabolism
14.
Eur J Immunol ; 51(11): 2665-2676, 2021 11.
Article in English | MEDLINE | ID: mdl-34547822

ABSTRACT

To monitor infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and successful vaccination against coronavirus disease 2019 (COVID-19), the kinetics of neutralizing or blocking anti-SARS-CoV-2 antibody titers need to be assessed. Here, we report the development of a quick and inexpensive surrogate SARS-CoV-2 blocking assay (SUBA) using immobilized recombinant human angiotensin-converting enzyme 2 (hACE2) and human cells expressing the native form of surface SARS-CoV-2 spike protein. Spike protein-expressing cells bound to hACE2 in the absence or presence of blocking antibodies were quantified by measuring the optical density of cell-associated crystal violet in a spectrophotometer. The advantages are that SUBA is a fast and inexpensive assay, which does not require biosafety level 2- or 3-approved laboratories. Most importantly, SUBA detects blocking antibodies against the native trimeric cell-bound SARS-CoV-2 spike protein and can be rapidly adjusted to quickly pre-screen already approved therapeutic antibodies or sera from vaccinated individuals for their ACE2 blocking activities against any emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Blocking/blood , Antibodies, Neutralizing/blood , Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Flow Cytometry/methods , Antibodies, Blocking/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
15.
Orphanet J Rare Dis ; 16(1): 373, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34479575

ABSTRACT

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is a group of genodermatoses in which deficient ectodysplasin A signalling leads to maldevelopment of skin appendages, various eccrine glands, and teeth. Individuals with HED often have disrupted epithelial barriers and, therefore, were suspected to be more susceptible to coronavirus infection. METHODS: 56 households with at least one member who had coronavirus disease of 2019 (COVID-19) were enrolled in a longitudinal study to compare the course of illness, immune responses, and long-term consequences of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection in HED patients (n = 15, age 9-52 years) and control subjects of the same age group (n = 149). RESULTS: In 14 HED patients, mild or moderate typical COVID-19 symptoms were observed that lasted for 4-45 days. Fever during the first days sometimes required external cooling measures. The course of COVID-19 was similar to that in control subjects if patients developed antibodies blocking the SARS-CoV-2 spike protein. Five out of six HED patients with completely abrogated ectodysplasin A signalling (83%) suffered from chronic, in two cases very severe fatigue following COVID-19, while only 25% of HED patients with residual activity of this pathway and 21% of control subjects recovering from COVID-19 experienced postinfectious fatigue. Hair loss after COVID-19 was also more frequent among HED patients (64%) than in the control group (13%). CONCLUSIONS: HED appears to be associated with an increased risk of long-term consequences of a SARS-CoV-2 infection. Preventive vaccination against COVID-19 should be recommended for individuals affected by this rare genetic disorder.


Subject(s)
COVID-19 , Ectodermal Dysplasia 1, Anhidrotic , Fatigue Syndrome, Chronic , Adolescent , Adult , Alopecia , Child , Humans , Longitudinal Studies , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Young Adult
16.
J Exp Clin Cancer Res ; 40(1): 248, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364401

ABSTRACT

BACKGROUND: The identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. METHODS: Gene fitness was determined by bioinformatics analysis from available datasets from genetic screenings. HSPD1 expression was evaluated by immunohistochemistry from formalin-fixed paraffin-embedded tissues from NSCLC patients. Real-time proliferation assays with and without cytotoxicity reagents, colony formation assays and cell cycle analyses were used to monitor growth and drug sensitivity of different NSCLC cells in vitro. In vivo growth was monitored with subcutaneous injections in immune-deficient mice. Cell metabolic activity was analyzed through extracellular metabolic flux analysis. Specific knockouts were introduced by CRISPR/Cas9. RESULTS: We show heat shock protein family D member 1 (HSPD1 or HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients' prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on oxidative phosphorylation and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. CONCLUSIONS: These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Chaperonin 60/metabolism , Lung Neoplasms/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Survival Analysis
17.
Oncogene ; 40(12): 2309-2322, 2021 03.
Article in English | MEDLINE | ID: mdl-33654197

ABSTRACT

Since their discovery, microRNAs (miRNAs) have been widely studied in almost every aspect of biology and medicine, leading to the identification of important gene regulation circuits and cellular mechanisms. However, investigations are generally focused on the analysis of their downstream targets and biological functions in overexpression and knockdown approaches, while miRNAs endogenous levels and activity remain poorly understood. Here, we used the cellular plasticity-regulating process of epithelial-to-mesenchymal transition (EMT) as a model to show the efficacy of a fluorescent sensor to separate cells with distinct EMT signatures, based on miR-200b/c activity. The system was further combined with a CRISPR-Cas9 screening platform to unbiasedly identify miR-200b/c upstream regulating genes. The sensor allows to infer miRNAs fundamental biological properties, as profiling of sorted cells indicated miR-200b/c as a molecular switch between EMT differentiation and proliferation, and suggested a role for metabolic enzymes in miR-200/EMT regulation. Analysis of miRNAs endogenous levels and activity for in vitro and in vivo applications could lead to a better understanding of their biological role in physiology and disease.


Subject(s)
Cell Plasticity/genetics , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , HCT116 Cells , Humans
18.
Eur J Immunol ; 51(5): 1089-1109, 2021 05.
Article in English | MEDLINE | ID: mdl-33336366

ABSTRACT

Long-lived antibody-secreting plasma cells are essential to establish humoral memory against pathogens. While a regulatory transcription factor network has been established in plasma cell differentiation, the regulatory role of miRNAs remains enigmatic. We have recently identified miR-148a as the most abundant miRNA in primary mouse and human plasma cells. To determine whether this plasma cell signature miRNA controls the in vivo development of B cells into long-lived plasma cells, we established mice with genomic, conditional, and inducible deletions of miR-148a. The analysis of miR-148a-deficient mice revealed reduced serum Ig, decreased numbers of newly formed plasmablasts and reduced CD19-negative, CD93-positive long-lived plasma cells. Transcriptome and metabolic analysis revealed an impaired glucose uptake, a reduced oxidative phosphorylation-based energy metabolism, and an altered abundance of homing receptors CXCR3 (increase) and CXCR4 (reduction) in miR-148a-deficient plasma cells. These findings support the role of miR-148a as a positive regulator of the maintenance of long-lived plasma cells.


Subject(s)
Cell Differentiation/genetics , Energy Metabolism , Gene Expression Regulation , MicroRNAs/genetics , Plasma Cells/metabolism , Animals , Antigens, CD19/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Epitopes, B-Lymphocyte/immunology , Gene Knockdown Techniques , Immunophenotyping , Lymphocyte Count , Mice , Mice, Knockout , Plasma Cells/cytology , Plasma Cells/immunology , RNA Interference
19.
Autophagy ; 17(9): 2238-2256, 2021 09.
Article in English | MEDLINE | ID: mdl-32910713

ABSTRACT

Plasma cells depend on quality control of newly synthesized antibodies in the endoplasmic reticulum (ER) via macroautophagy/autophagy and proteasomal degradation. The cytosolic adaptor protein TFG (Trk-fused gene) regulates ER-Golgi transport, the secretory pathway and proteasome activity in non-immune cells. We show here that TFG is upregulated during lipopolysaccharide- and CpG-induced differentiation of B1 and B2 B cells into plasmablasts, with the highest expression of TFG in mature plasma cells. CRISPR-CAS9-mediated gene disruption of tfg in the B lymphoma cell line CH12 revealed increased apoptosis, which was reverted by BCL2 but even more by ectopic TFG expression. Loss of TFG disrupted ER structure, leading to an expanded ER and increased expression of ER stress genes. When compared to wild-type CH12 cells, tfg KO CH12 cells were more sensitive toward ER stress induced by tunicamycin, monensin and proteasome inhibition or by expression of an ER-bound immunoglobulin (Ig) µ heavy (µH) chain. CH12 tfg KO B cells displayed more total LC3, lower LC3-II turnover and increased numbers and size of autophagosomes. Tandem-fluorescent-LC3 revealed less accumulation of GFP-LC3 in starved and chloroquine-treated CH12 tfg KO B cells. The GFP:RFP ratio of tandem-fluorescent-LC3 was higher in tunicamycin-treated CH12 tfg KO B cells, suggesting less autophagy flux during induced ER stress. Based on these data, we suggest that TFG controls autophagy flux in CH12 B cells and propose that TFG is a survival factor that alleviates ER stress through the support of autophagy flux in activated B cells and mature plasma cells.Abbreviations: Ab, antibody; Ag, antigen; ASC, antibody-secreting cells; ATG, autophagy-related; BCR, B cell receptor; COPII, coat protein complex II; CpG, non-methylated CpG oligonucleotide; ER, endoplasmic reticulum; ERAD, ER-associated degradation; FO, follicular; GFP, green fluorescent protein; HC, heavy chain; Ig, immunoglobulin; IRES, internal ribosomal entry site; LC, light chain; MZ, marginal zone; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; TLR, toll-like receptor; UPR, unfolded protein response.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Lymphoma, B-Cell , Proteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagosomes/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Mice , Proteins/metabolism
20.
EMBO J ; 39(19): e103889, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32815200

ABSTRACT

Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.


Subject(s)
Adenylate Kinase/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , HEK293 Cells , HeLa Cells , Humans , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...