Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38871868

ABSTRACT

Gluconobacter oxydans succinic semialdehyde reductase (GoxSSAR) and Acetobacter aceti glyoxylate reductase (AacGR) represent a novel class in the ß-HAD superfamily. Kinetic analyses revealed GoxSSAR's activity with both glyoxylate and succinic semialdehyde, while AacGR is glyoxylate-specific. GoxSSAR K167A lost activity with succinic semialdehyde but retained some with glyoxylate, whereas AacGR K175A lost activity. These findings elucidate differences between these homologous enzymes.

2.
Biol Trace Elem Res ; 201(10): 4861-4869, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36648599

ABSTRACT

Selenium (Se) is an essential micronutrient, and animals biosynthesize selenoproteins from various selenocompounds such as inorganic salts and organic selenocompounds as a Se source. In addition to the inorganic and organic forms of Se, it is also known that elemental Se is biologically synthesized at the nanoscale in nature. Biologically synthesized Se nanoparticles (Se-NPs), i.e., biogenic Se-NPs (Se-BgNPs), have not been fully investigated as a Se source compared with the other forms of Se. In this study, we evaluated the nutritional availability of Se-BgNPs biosynthesized in E. coli and revealed that Se-BgNPs were less assimilated into selenoproteins in rats as a Se source than inorganic Se salt or chemically synthesized Se-NPs. Se-BgNPs showed tolerance toward digestion and low absorbability in gut, which resulted in the low nutritional availability. Se-BgNPs seem to be coated with a biomaterial that functions to reduce their toxicity toward E. coli and at the same time lowers their availability to animals.


Subject(s)
Nanoparticles , Selenium , Rats , Animals , Selenium/analysis , Escherichia coli , Nanoparticles/chemistry , Selenoproteins , Nutritive Value
3.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36125244

ABSTRACT

Oxidative stress-mediated formation of protein hydroperoxides can induce irreversible fragmentation of the peptide backbone and accumulation of cross-linked protein aggregates, leading to cellular toxicity, dysfunction, and death. However, how bacteria protect themselves from damages caused by protein hydroperoxidation is unknown. Here, we show that YjbI, a group II truncated haemoglobin from Bacillus subtilis, prevents oxidative aggregation of cell-surface proteins by its protein hydroperoxide peroxidase-like activity, which removes hydroperoxide groups from oxidised proteins. Disruption of the yjbI gene in B. subtilis lowered biofilm water repellence, which associated with the cross-linked aggregation of the biofilm matrix protein TasA. YjbI was localised to the cell surface or the biofilm matrix, and the sensitivity of planktonically grown cells to generators of reactive oxygen species was significantly increased upon yjbI disruption, suggesting that YjbI pleiotropically protects labile cell-surface proteins from oxidative damage. YjbI removed hydroperoxide residues from the model oxidised protein substrate bovine serum albumin and biofilm component TasA, preventing oxidative aggregation in vitro. Furthermore, the replacement of Tyr63 near the haem of YjbI with phenylalanine resulted in the loss of its protein peroxidase-like activity, and the mutant gene failed to rescue biofilm water repellency and resistance to oxidative stress induced by hypochlorous acid in the yjbI-deficient strain. These findings provide new insights into the role of truncated haemoglobin and the importance of hydroperoxide removal from proteins in the survival of aerobic bacteria.


Subject(s)
Bacillus subtilis , Truncated Hemoglobins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Biofilms , Heme/metabolism , Hydrogen Peroxide/metabolism , Hypochlorous Acid/metabolism , Membrane Proteins/metabolism , Oxidoreductases/metabolism , Peroxidases/metabolism , Phenylalanine/metabolism , Protein Aggregates , Serum Albumin, Bovine/metabolism , Truncated Hemoglobins/metabolism , Water/metabolism
4.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681630

ABSTRACT

Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA-selenium complexes.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas stutzeri/metabolism , Selenious Acid/metabolism , Selenoproteins/biosynthesis , Thioredoxins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Formate Dehydrogenases/metabolism , Oxidation-Reduction , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Selenious Acid/chemistry , Selenoproteins/chemistry , Thioredoxins/chemistry , Thioredoxins/genetics
5.
Microbiol Resour Announc ; 10(33): e0063121, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34410158

ABSTRACT

Pseudomonas stutzeri is a potential candidate for bioremediation of selenium-contaminated grounds and waters. Here, we report the complete genome sequence of a novel strain, F2a, which was isolated from a seleniferous area of Punjab, India. The genome sequence provides insight into the potential selenium oxyanion-reducing activity of this strain.

6.
J Biochem ; 170(4): 511-520, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34097066

ABSTRACT

Escherichia coli dihydropyrimidine dehydrogenase (EcDPD) catalyses the NADH-dependent reduction of uracil and thymine to the corresponding 5,6-dihydropyrimidines to control their metabolite pools. EcDPD consists of two subunits, PreT and PreA, and requires FAD, FMN and Fe-S clusters for activity. Recombinant EcDPD with a C-terminal His6-tagged-PreA subunit was overproduced in a DPD-lacking E. coli cells with augmented Fe-S cluster synthesis. Anaerobic purification resulted in purified enzyme with a specific activity of 13 µmol min-1 mg-1. The purified EcDPD was a heterotetramer and contained 0.81 FAD, 0.99 FMN, 14 acid-labile sulphur and 15 iron per PreT-PreA dimer. The enzyme exhibited Michaelis-Menten kinetics for both the forward and reverse reactions, which is distinct from mammalian DPDs showing substrate inhibition kinetics. For uracil reduction, the kcat, kcat/KNADH and kcat/Kuracil values were constant over the pH range of 5.5-10. For dihydrouracil (DHU) dehydrogenation, the pH-dependence of the kcat and kcat/KNAD+ values indicated that a residue with a pKa of 6.6 must be deprotonated for activity. Biochemical and kinetic comparisons with pig DPD revealed that protonation sates of the catalytically competent forms of EcDPD are distinct from those of pig enzyme.


Subject(s)
Dihydrouracil Dehydrogenase (NADP)/metabolism , Escherichia coli Proteins/metabolism , Flavoproteins/metabolism , Iron-Sulfur Proteins/metabolism , Animals , Catalysis , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Flavins/metabolism , Flavoproteins/chemistry , Histidine/metabolism , Iron/chemistry , Iron/metabolism , Kinetics , Oligopeptides/metabolism , Sulfur/chemistry , Sulfur/metabolism , Swine , Thymine/metabolism , Uracil/analogs & derivatives , Uracil/metabolism
7.
J Biochem ; 169(4): 477-484, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33136147

ABSTRACT

Several bacteria can reduce tellurate into the less toxic elemental tellurium, but the genes responsible for this process have not yet been identified. In this study, we screened the Keio collection of single-gene knockouts of Escherichia coli responsible for decreased tellurate reduction and found that deletions of 29 genes, including those for molybdenum cofactor (Moco) biosynthesis, iron-sulphur biosynthesis, and the twin-arginine translocation pathway resulted in decreased tellurate reduction. Among the gene knockouts, deletions of nsrR, moeA, yjbB, ynbA, ydaS and yidH affected tellurate reduction more severely than those of other genes. Based on our findings, we determined that the ynfEF genes, which code for the components of the selenate reductase YnfEFGH, are responsible for tellurate reduction. Assays of several molybdoenzymes in the knockouts suggested that nsrR, yjbB, ynbA, ydaS and yidH are essential for the activities of molybdoenzymes in E. coli. Furthermore, we found that the nitric oxide sensor NsrR positively regulated the transcription of the Moco biosynthesis gene moeA. These findings provided new insights into the complexity and regulation of Moco biosynthesis in E. coli.


Subject(s)
DNA-Binding Proteins , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Oxidoreductases , Sulfurtransferases , Transcription Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Oxidoreductases/biosynthesis , Oxidoreductases/genetics , Sulfurtransferases/genetics , Sulfurtransferases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060273

ABSTRACT

Acetobacter aceti is used in industry to produce vinegar by converting ethanol into acetic acid. We determined the complete genome sequence of A aceti JCM20276, which is composed of one chromosome and four plasmids. This study may contribute to a better understanding of the genes necessary for acetic acid production.

9.
Biosci Biotechnol Biochem ; 84(11): 2303-2310, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32729375

ABSTRACT

Enzymes related to ß-hydroxyacid dehydrogenases/3-hydroxyisobutyrate dehydrogenases are ubiquitous, but most of them have not been characterized. An uncharacterized protein with moderate sequence similarities to Gluconobacter oxydans succinic semialdehyde reductase and plant glyoxylate reductases/succinic semialdehyde reductases was found in the genome of Acetobacter aceti JCM20276. The corresponding gene was cloned and expressed in Escherichia coli. The gene product was purified and identified as a glyoxylate reductase that exclusively catalyzed the NAD(P)H-dependent reduction of glyoxylate to glycolate. The strict substrate specificity of this enzyme to glyoxylate, the diverged sequence motifs for its binding sites with cofactors and substrates, and its phylogenetic relationship to homologous enzymes suggested that this enzyme represents a novel class of enzymes in the ß-hydroxyacid dehydrogenase family. This study may provide an important clue to clarify the metabolism of glyoxylate in bacteria. Abbreviations: GR: glyoxylate reductase; GRHPR: glyoxylate reductase/hydroxypyruvate reductase; HIBADH: 3-hydroxyisobutyrate dehydrogenase; SSA: succinic semialdehyde; SSAR: succinic semialdehyde reductase.


Subject(s)
Acetobacter/enzymology , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Kinetics , Metals/pharmacology , Phylogeny , Substrate Specificity
10.
Cell Mol Life Sci ; 77(12): 2367-2386, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31471680

ABSTRACT

Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid ß (Aß)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.


Subject(s)
Apolipoproteins E/metabolism , Exosomes/metabolism , Protein Transport/physiology , Selenoprotein P/metabolism , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Line , Cell Line, Tumor , Endothelial Cells/metabolism , HEK293 Cells , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
Biochem Biophys Res Commun ; 516(2): 474-479, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31229265

ABSTRACT

Selenite reduction is a key step in the biogeochemical cycle of selenium-an essential trace element for life. A variety of bacteria can transform selenite into elemental selenium nanoparticles on the cell surface via anaerobic respiration or detoxification processes. However, the proteins associated with the uptake of selenite for these processes are poorly understood. In this study, we investigated the role of an outer membrane porin-like protein, ExtI, in selenite permeation in Geobacter sulfurreducens. We demonstrated that selenite uptake and selenium nanoparticle formation were impaired in an extI-deficient strain. A putative rhodanese-like lipoprotein is encoded by an extH gene located immediately upstream of extI in the genome. We showed that ExtH is translocated into inner and outer membranes and that extI deficiency exclusively affects the localization of ExtH in the outer membrane. Coelution of ExtI and ExtH during gel filtration analysis of the outer membrane fraction of wild-type cells suggests a direct protein-protein interaction between them. Taken together, these results lead us to propose a physiological role for ExtI as a selenite channel associated with ExtH in the outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Geobacter/metabolism , Lipoproteins/metabolism , Porins/metabolism , Selenious Acid/metabolism , Thiosulfate Sulfurtransferase/metabolism , Cell Membrane/metabolism , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Subcellular Fractions
12.
Biochim Biophys Acta Gen Subj ; 1862(11): 2433-2440, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29859962

ABSTRACT

BACKGROUND: Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely. SCOPE OF REVIEW: In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis. MAJOR CONCLUSIONS: Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli. GENERAL SIGNIFICANCE: Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled "Selenium research in biochemistry and biophysics - 200 year anniversary".

13.
Int J Mol Sci ; 19(3)2018 Mar 11.
Article in English | MEDLINE | ID: mdl-29534491

ABSTRACT

The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to ß-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.


Subject(s)
Bacterial Proteins/metabolism , Geobacter/genetics , Porins/metabolism , Selenious Acid/metabolism , Tellurium/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ferric Compounds/metabolism , Fumarates/metabolism , Geobacter/metabolism , Oxidation-Reduction , Porins/chemistry , Porins/genetics
14.
Anal Biochem ; 532: 1-8, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28552757

ABSTRACT

The low redox potential of selenide and selenol is physiologically important, as it confers efficient catalytic abilities to selenoproteins. Quantitative determination of selenol and selenide provide important clues for understanding the metabolism and physiological function of selenium. However, selective detection of selenol and selenide is extremely difficult because of their chemical similarity to thiol and sulfide. In this study, we established a highly sensitive, selective, quantitative, and simple method for detection of selenol and selenide, using a reaction with monochlorobimane (MCB), followed by ethyl acetate extraction of the product syn-(methyl,methyl)bimane. We analyzed selenide production from selenite, catalyzed by human glutathione reductase, and also determined selenide and selenol concentrations in Hepa1-6 cells using the MCB method, to demonstrate its practical applications. This study provides a new tool for selenium detection in biology.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Fluorescence , Liver Neoplasms/diagnosis , Pyrazoles/chemistry , Selenium Compounds/analysis , Sodium Selenite/analysis , Animals , Carcinoma, Hepatocellular/metabolism , Glutathione Reductase/metabolism , Humans , Liver Neoplasms/metabolism , Mice , Pyrazoles/metabolism , Tumor Cells, Cultured
15.
Biosci Biotechnol Biochem ; 80(10): 1970-2, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27405844

ABSTRACT

Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 µM and 0.352 min(-1), respectively.


Subject(s)
Enzyme Assays/methods , Phosphotransferases/metabolism , Pyruvic Acid/metabolism , Recombinant Proteins/metabolism , Thermus thermophilus/enzymology , Adenosine Monophosphate/metabolism , Humans
16.
Biosci Biotechnol Biochem ; 80(3): 514-7, 2016.
Article in English | MEDLINE | ID: mdl-26634770

ABSTRACT

4-Methyl-5-hydroxyethylthiazole kinase (ThiM) participates in thiamin biosynthesis as the key enzyme in its salvage pathway. We purified and characterized ThiM from Escherichia coli. It has broad substrate specificity toward various nucleotides and shows a preference for dATP as a phosphate donor over ATP. It is activated by divalent cations, and responds more strongly to Co(2+) than to Mg(2+).


Subject(s)
Escherichia coli/enzymology , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Amino Acid Sequence , Chromatography, Gel , Crystallography, X-Ray , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sequence Homology, Amino Acid
18.
J Biochem ; 157(4): 201-10, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25359785

ABSTRACT

Fish have a complex self-defense mechanism against microbial invasion. Recently, l-lysine α-oxidases have been identified from a number of fish species as a novel type of antibacterial protein in the integument. These enzymes exhibit strict substrate specificity for l-lysine, but the underlying mechanisms and details of their catalytic properties remain unknown. In this study, a synthetic gene coding for Scomber japonicus l-lysine α-oxidase, originally termed AIP (for apoptosis-inducing protein), was expressed in Pichia pastoris, and the recombinant enzyme (rAIP) was purified and characterized. rAIP exhibited essentially the same substrate specificity as the native enzyme, catalyzing the oxidative deamination of l-lysine as an exclusive substrate. rAIP was N-glycosylated and remained active over a wide range of pH, with an optimal pH of 7.5. The enzyme was stable in the pH range from 4.5 to 10.0 and was thermally stable up to 60°C. A molecular modelling of rAIP and a comparative structure/sequence analysis with homologous enzymes indicate that Asp(220) and Asp(320) are the substrate-binding residues that are likely to confer exclusive substrate specificity for l-lysine on the fish enzymes.


Subject(s)
Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Fishes/genetics , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Catalytic Domain , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Sequence Data , Sequence Alignment , Substrate Specificity , Temperature
19.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 506-10, 2015.
Article in English | MEDLINE | ID: mdl-26875494

ABSTRACT

Glycine oxidase, encoded by the thiO gene, participates in the biosynthesis of thiamin by providing glyoxyl imine to form the thiazole moiety of thiamin. We have purified and characterized ThiO from Pseudomonas putida KT2440. It has a monomeric structure that is distinct from the homotetrameric ThiOs from Bacillus subtilis and Geobacillus kaustophilus. The P. putida ThiO is unique in that glycine is its preferred substrate, which differs markedly from the B. subtilis and G. kaustophilus enzymes that use D-proline as the preferred substrate.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Glycine/metabolism , Pseudomonas putida/enzymology , Amino Acid Oxidoreductases/isolation & purification , Bacillus subtilis/enzymology , Geobacillus/enzymology , Molecular Structure , Substrate Specificity
20.
Appl Microbiol Biotechnol ; 99(12): 5045-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25547835

ABSTRACT

L-Pipecolic acid is a key component of biologically active molecules and a pharmaceutically important chiral building block. It can be stereoselectively produced from L-lysine by a two-step bioconversion involving L-lysine α-oxidase and ∆(1)-piperideine-2-carboxylae (Pip2C) reductase. In this study, we focused on an L-lysine α-oxidase from Scomber japonicus that was originally identified as an apoptosis-inducing protein (AIP) and applied the enzyme to one-pot fermentation of L-pipecolic acid in Escherichia coli. A synthetic gene coding for an AIP was expressed in E. coli, and the recombinant enzyme was purified and characterized. The purified enzyme was determined to be a homodimer with a molecular mass of 133.9 kDa. The enzyme essentially exhibited the same substrate specificity as the native enzyme. Optimal temperature and pH for the enzymatic reaction were 70 °C and 7.4, respectively. The enzyme was stable below 60 °C and at a pH range of 5.5-7.5 but was markedly inhibited by Co(2+). To establish a one-pot fermentation system for the synthesis of optically pure L-pipecolic acid from DL-lysine, an E. coli strain carrying a plasmid encoding AIP, Pip2C reductase from Pseudomonas putida, lysine racemase from P. putida, and glucose dehydrogenase from Bacillus subtilis was constructed. The one-pot process produced 45.1 g/L of L-pipecolic acid (87.4 % yield from DL-lysine) after a 46-h reaction with high optical purity (>99.9 % enantiomeric excess).


Subject(s)
Amino Acid Oxidoreductases/genetics , Escherichia coli/metabolism , Fish Proteins/genetics , Lysine/metabolism , Pipecolic Acids/metabolism , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/isolation & purification , Amino Acid Oxidoreductases/metabolism , Animals , Enzyme Stability , Escherichia coli/genetics , Fermentation , Fish Proteins/chemistry , Fish Proteins/isolation & purification , Fish Proteins/metabolism , Fishes/genetics , Lysine/chemistry , Metabolic Engineering , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...