Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
2.
J Transl Med ; 22(1): 190, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383458

ABSTRACT

BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/pathology , B7-H1 Antigen , Biomarkers, Tumor
4.
Commun Biol ; 6(1): 760, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479733

ABSTRACT

Brain metastases is the most common intracranial tumor and account for approximately 20% of all systematic cancer cases. It is a leading cause of death in advanced-stage cancer, resulting in a five-year overall survival rate below 10%. Therefore, there is a critical need to identify effective biomarkers that can support frequent surveillance and promote efficient drug guidance in brain metastasis. Recently, the remarkable breakthroughs in single-cell RNA-sequencing (scRNA-seq) technology have advanced our insights into the tumor microenvironment (TME) at single-cell resolution, which offers the potential to unravel the metastasis-related cellular crosstalk and provides the potential for improving therapeutic effects mediated by multifaceted cellular interactions within TME. In this study, we have applied scRNA-seq and profiled 10,896 cells collected from five brain tumor tissue samples originating from breast and lung cancers. Our analysis reveals the presence of various intratumoral components, including tumor cells, fibroblasts, myeloid cells, stromal cells expressing neural stem cell markers, as well as minor populations of oligodendrocytes and T cells. Interestingly, distinct cellular compositions are observed across different samples, indicating the influence of diverse cellular interactions on the infiltration patterns within the TME. Importantly, we identify tumor-associated fibroblasts in both our in-house dataset and external scRNA-seq datasets. These fibroblasts exhibit high expression of type I collagen genes, dominate cell-cell interactions within the TME via the type I collagen signaling axis, and facilitate the remodeling of the TME to a collagen-I-rich extracellular matrix similar to the original TME at primary sites. Additionally, we observe M1 activation in native microglial cells and infiltrated macrophages, which may contribute to a proinflammatory TME and the upregulation of collagen type I expression in fibroblasts. Furthermore, tumor cell-specific receptors exhibit a significant association with patient survival in both brain metastasis and native glioblastoma cases. Taken together, our comprehensive analyses identify type I collagen-secreting tumor-associated fibroblasts as key mediators in metastatic brain tumors and uncover tumor receptors that are potentially associated with patient survival. These discoveries provide potential biomarkers for effective therapeutic targets and intervention strategies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Collagen Type I , Brain , Fibroblasts , Tumor Microenvironment
5.
Cancers (Basel) ; 15(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37174093

ABSTRACT

The brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.

6.
Nat Med ; 29(5): 1273-1286, 2023 05.
Article in English | MEDLINE | ID: mdl-37202560

ABSTRACT

The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Humans , Cohort Studies , Biomarkers, Tumor/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Transcriptome , Tumor Microenvironment
7.
Ann Surg Oncol ; 30(6): 3833-3844, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36864326

ABSTRACT

BACKGROUND: Liquid biopsies have become an integral part of cancer management as minimally invasive options to detect molecular and genetic changes. However, current options show poor sensitivity in peritoneal carcinomatosis (PC). Novel exosome-based liquid biopsies may provide critical information on these challenging tumors. In this initial feasibility analysis, we identified an exosome gene signature of 445 genes (ExoSig445) from colon cancer patients, including those with PC, that is distinct from healthy controls. METHODS: Plasma exosomes from 42 patients with metastatic and non-metastatic colon cancer and 10 healthy controls were isolated and verified. RNAseq analysis of exosomal RNA was performed and differentially expressed genes (DEGs) were identified by the DESeq2 algorithm. The ability of RNA transcripts to discriminate control and cancer cases was assessed by principal component analysis (PCA) and Bayesian compound covariate predictor classification. An exosomal gene signature was compared with tumor expression profiles of The Cancer Genome Atlas. RESULTS: Unsupervised PCA using exosomal genes with greatest expression variance showed stark separation between controls and patient samples. Using separate training and test sets, gene classifiers were constructed capable of discriminating control and patient samples with 100% accuracy. Using a stringent statistical threshold, 445 DEGs fully delineated control from cancer samples. Furthermore, 58 of these exosomal DEGs were found to be overexpressed in colon tumors. CONCLUSIONS: Plasma exosomal RNAs can robustly discriminate colon cancer patients, including patients with PC, from healthy controls. ExoSig445 can potentially be developed as a highly sensitive liquid biopsy test in colon cancer.


Subject(s)
Colonic Neoplasms , Exosomes , Humans , Biomarkers, Tumor/metabolism , Exosomes/genetics , Exosomes/metabolism , Bayes Theorem , Colonic Neoplasms/pathology , RNA/metabolism
8.
NPJ Precis Oncol ; 7(1): 34, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973365

ABSTRACT

Different types of therapy are currently being used to treat non-small cell lung cancer (NSCLC) depending on the stage of tumor and the presence of potentially druggable mutations. However, few biomarkers are available to guide clinicians in selecting the most effective therapy for all patients with various genetic backgrounds. To examine whether patients' mutation profiles are associated with the response to a specific treatment, we collected comprehensive clinical characteristics and sequencing data from 524 patients with stage III and IV NSCLC treated at Atrium Health Wake Forest Baptist. Overall survival based Cox-proportional hazard regression models were applied to identify mutations that were "beneficial" (HR < 1) or "detrimental" (HR > 1) for patients treated with chemotherapy (chemo), immune checkpoint inhibitor (ICI) and chemo+ICI combination therapy (Chemo+ICI) followed by the generation of mutation composite scores (MCS) for each treatment. We also found that MCS is highly treatment specific that MCS derived from one treatment group failed to predict the response in others. Receiver operating characteristics (ROC) analyses showed a superior predictive power of MCS compared to TMB and PD-L1 status for immune therapy-treated patients. Mutation interaction analysis also identified novel co-occurring and mutually exclusive mutations in each treatment group. Our work highlights how patients' sequencing data facilitates the clinical selection of optimized treatment strategies.

10.
Neurooncol Adv ; 5(1): vdac186, 2023.
Article in English | MEDLINE | ID: mdl-36789023

ABSTRACT

Background: Leptomeningeal failure (LMF) represents a devastating progression of disease following resection of brain metastases (BrM). We sought to identify a biomarker at time of BrM resection that predicts for LMF using mass spectrometry-based proteomic analysis of resected BrM and to translate this finding with histochemical assays. Methods: We retrospectively reviewed 39 patients with proteomic data available from resected BrM. We performed an unsupervised analysis with false discovery rate adjustment (FDR) to compare proteomic signature of BrM from patients that developed LMF versus those that did not. Based on proteomic analysis, we applied trichrome stain to a total of 55 patients who specifically underwent resection and adjuvant radiosurgery. We used competing risks regression to assess predictors of LMF. Results: Of 39 patients with proteomic data, FDR revealed type I collagen-alpha-1 (COL1A1, P = .045) was associated with LMF. The degree of trichrome stain in each block correlated with COL1A1 expression (ß = 1.849, P = .001). In a cohort of 55 patients, a higher degree of trichrome staining was associated with an increased hazard of LMF in resected BrM (Hazard Ratio 1.58, 95% CI 1.11-2.26, P = .01). Conclusion: The degree of trichrome staining correlated with COL1A1 and portended a higher risk of LMF in patients with resected brain metastases treated with adjuvant radiosurgery. Collagen deposition and degree of fibrosis may be able to serve as a biomarker for LMF.

11.
Proteomics Clin Appl ; 17(2): e2100085, 2023 03.
Article in English | MEDLINE | ID: mdl-36217952

ABSTRACT

PURPOSE: Peritoneal carcinomatosis (PC), metastasized from colorectal cancer (CRC), remains a highly lethal disease. Outcomes of PC is significantly influenced by the amount of intra-abdominal tumor burden and therefore diagnostic tests that facilitate earlier diagnosis could improve PC treatment and patient outcomes. EXPERIMENTAL DESIGN: Using mass-spectrometry-based proteomics, we characterized the protein features of circulating exosomes in the context of CRC PC, CRC with liver metastasis, and primary CRC limited to the colon. We profiled exosomes isolated from patient plasma to identify exosome-associated protein cargoes released by these cancer types. RESULTS: Analysis of the resulting data identified metastasis-specific exosome protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. CONCLUSION AND CLINICAL RELEVANCE: This research yielded distinct protein profiles for the CRC patient groups and suggests the utility of plasma exosome proteomic analysis for a better understanding of PC development and metastasis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Exosomes , Peritoneal Neoplasms , Humans , Pilot Projects , Peritoneal Neoplasms/pathology , Proteomics , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Biomarkers/metabolism , Exosomes/metabolism , Colorectal Neoplasms/metabolism
12.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36418073

ABSTRACT

BACKGROUND: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics. METHODS: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden. Cytotoxic (CD8+) T cells from Pmel-1 transgenic mice were used for T cell activation, cytotoxic T lymphocyte, and cellular bioenergetic assays. Single-cell RNA-sequencing, ELISA, and flow cytometry was performed on peripheral blood mononuclear cells and plasma of melanoma patients receiving anti-PD-1 therapy to examine CD47/TSP1 expression. RESULTS: Human malignant melanoma tissue had increased CD47 and TSP1 expression within the tumor microenvironment compared with benign tissue. Due to the negative implications CD47/TSP1 can have on antitumor immune responses, we targeted CD47 in a melanoma model and observed a decrease in tumor burden due to increased tumor oxygen saturation and granzyme B secreting CD8+ T cells compared with wild-type tumors. Additionally, Pmel-1 CD8+ T cells exposed to TSP1 had reduced activation, proliferation, and effector function against B16 melanoma cells. Targeting CD47 allowed CD8+ T cells to overcome this TSP1 interaction to sustain these functions. TSP1 exposed CD8+ T cells have a decreased rate of glycolysis; however, targeting CD47 restored glycolysis when CD8+ T cells were exposed to TSP1, suggesting CD47 mediated metabolic reprogramming of T cells. Additionally, non-responding patients to anti-PD-1 therapy had increased T cells expressing CD47 and circulating levels of TSP1 compared with responding patients. Since CD47/TSP1 signaling axis negatively impacts CD8+ T cells and non-responding patients to anti-PD-1 therapy have increased CD47/TSP1 expression, we targeted CD47 in combination with anti-PD-1 in a melanoma model. Targeting CD47 in combination with anti-PD-1 treatment further decreased tumor burden compared with monotherapy and control. CONCLUSION: CD47/TSP1 expression could serve as a marker to predict patient response to immune checkpoint blockade treatment, and targeting this pathway may preserve T cell activation, proliferation, effector function, and bioenergetics to reduce tumor burden as a monotherapy or in combination with anti-PD-1.


Subject(s)
CD47 Antigen , Melanoma, Experimental , Animals , Humans , Mice , CD47 Antigen/metabolism , Energy Metabolism , Leukocytes, Mononuclear , Lymphocyte Activation , Melanoma, Experimental/drug therapy , Tumor Microenvironment , Thrombospondin 1/metabolism
13.
Cancer ; 128(17): 3254-3264, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35767280

ABSTRACT

BACKGROUND: Cellular and intrinsic markers of sarcoma immunogenicity are poorly understood. To gain insight into whether tumor-immune interactions correlate with clinical aggressiveness, the authors examined the prognostic significance of immune gene signatures in combination with tumor mutational burden (TMB) and cancer-testis antigen (CTA) expression. METHODS: RNA sequencing and clinical data of 259 soft tissue sarcomas from The Cancer Genome Atlas project were used to investigate associations between published immune gene signatures and patient overall survival (OS) in the contexts of TMB, as computed from whole-exome sequencing data, and CTA gene expression. Multivariate Cox proportional hazards regression models and log-rank tests were used to assess survival associations. RESULTS: Immune signature scores that reflected in part the intratumoral abundance of cytotoxic T cells showed significant positive associations with OS. However, the prognostic power of the T-cell signatures was highly dependent on TMB-high status, consistent with protective effects of tumor-infiltrating T cells in tumors with elevated antigenicity. In TMB-low tumors, a signature of infiltrating plasma B cells was significantly and positively associated with OS, independent of T-cell signature status. Although tumor subtypes based on differential expression patterns of CTA genes showed different survival associations within leiomyosarcoma and myxofibrosarcoma histologies, neither CTA nor histologic subtype interacted with the T-cell-survival association. CONCLUSIONS: Signatures of T-cell and plasma B-cell infiltrates were associated with a survival benefit in soft tissue sarcomas. TMB, but not CTA expression, influenced the prognostic power of T-cell-associated, but not plasma B-cell-associated, survival. LAY SUMMARY: Clinical data and RNA analysis of 259 soft tissue sarcomas from The Cancer Genome Atlas project were used to investigate associations between five published gene immune cell expression signatures and survival in the context of tumor mutations. Activated T cells had a significant positive association with patient survival. Although high tumor mutation burden was associated with good survival, the prognostic power of T-cell signatures was highly dependent on tumor mutational status, consistent with protective effects of tumor-infiltrating T cells in tumors with high levels of antigens. In low tumor mutation-bearing tumors, plasma B cells were positively associated with survival.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Adult , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mutation , Prognosis , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Exome Sequencing
14.
Clin Cancer Res ; 28(6): 1192-1202, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35284940

ABSTRACT

PURPOSE: Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance. EXPERIMENTAL DESIGN: We compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained at baseline from patients with melanoma treated with anti-PD-1 therapy. We also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic changes observed in peripheral blood mononuclear cells (PBMC) and patient plasma. RESULTS: Pretreatment PBMC from responders had a higher reserve respiratory capacity and higher basal glycolytic activity compared with nonresponders. Metabolomic analysis revealed that responder and nonresponder patient samples cluster differently, suggesting differences in metabolic signatures at baseline. Differential levels of specific lipid, amino acid, and glycolytic pathway metabolites were observed by response. Further, scRNAseq analysis revealed upregulation of T-cell genes regulating glycolysis. Our analysis showed that SLC2A14 (Glut-14; a glucose transporter) was the most significant gene upregulated in responder patients' T-cell population. Flow cytometry analysis confirmed significantly elevated cell surface expression of the Glut-14 in CD3+, CD8+, and CD4+ circulating populations in responder patients. Moreover, LDHC was also upregulated in the responder population. CONCLUSIONS: Our results suggest a glycolytic signature characterizes checkpoint inhibitor responders; consistently, both ECAR and lactate-to-pyruvate ratio were significantly associated with overall survival. Together, these findings support the use of blood bioenergetics and metabolomics as predictive biomarkers of patient response to immune checkpoint inhibitor therapy.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Energy Metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Leukocytes, Mononuclear/metabolism , Melanoma/drug therapy , Melanoma/genetics , Programmed Cell Death 1 Receptor
15.
Nat Commun ; 13(1): 1673, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354808

ABSTRACT

Devimistat is a TCA cycle inhibitor. A previously completed phase I study of devimistat in combination with cytarabine and mitoxantrone in patients with relapsed or refractory AML showed promising response rates. Here we report the results of a single arm phase II study (NCT02484391). The primary outcome of feasibility of maintenance devimistat following induction and consolidation with devimistat in combination with high dose cytarabine and mitoxantrone was not met, as maintenance devimistat was only administered in 2 of 21 responders. The secondary outcomes of response (CR + CRi) and median survival were 44% (21/48) and 5.9 months respectively. There were no unexpected toxicities observed. An unplanned, post-hoc analysis of the phase I and II datasets suggests a trend of a dose response in older but not younger patients. RNA sequencing data from patient samples reveals an age-related decline in mitochondrial gene sets. Devimistat impairs ATP synthesis and we find a correlation between mitochondrial membrane potential and sensitivity to chemotherapy. Devimistat also induces mitochondrial reactive oxygen species and turnover consistent with mitophagy. We find that pharmacological or genetic inhibition of mitochondrial fission or autophagy sensitizes cells to devimistat. These findings suggest that an age related decline in mitochondrial quality and autophagy may be associated with response to devimistat however this needs to be confirmed in larger cohorts with proper trial design.


Subject(s)
Leukemia, Myeloid, Acute , Mitoxantrone , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Caprylates , Cytarabine/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Sulfides , Treatment Outcome
16.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35037026

ABSTRACT

There is a lack of robust generalizable predictive biomarkers of response to immune checkpoint blockade in multiple types of cancer. We develop hDirect-MAP, an algorithm that maps T cells into a shared high-dimensional (HD) expression space of diverse T cell functional signatures in which cells group by the common T cell phenotypes rather than dimensional reduced features or a distorted view of these features. Using projection-free single-cell modeling, hDirect-MAP first removed a large group of cells that did not contribute to response and then clearly distinguished T cells into response-specific subpopulations that were defined by critical T cell functional markers of strong differential expression patterns. We found that these grouped cells cannot be distinguished by dimensional-reduction algorithms but are blended by diluted expression patterns. Moreover, these identified response-specific T cell subpopulations enabled a generalizable prediction by their HD metrics. Tested using five single-cell RNA-seq or mass cytometry datasets from basal cell carcinoma, squamous cell carcinoma and melanoma, hDirect-MAP demonstrated common response-specific T cell phenotypes that defined a generalizable and accurate predictive biomarker.


Subject(s)
Immunotherapy , Melanoma , Biomarkers , Humans , Melanoma/drug therapy , Melanoma/genetics , T-Lymphocytes
17.
Head Neck ; 44(2): 443-452, 2022 02.
Article in English | MEDLINE | ID: mdl-34841601

ABSTRACT

BACKGROUND: The authors aimed to define novel gene expression signatures that are associated with patients' survival with head and neck squamous cell carcinoma (HNSCC). METHODS: TCGA RNA-seq data were used for gene expression clusters extraction from 499 tumor samples by the "EPIG" method. Tumor samples were then partitioned into lower and higher than median level groups for survival relevant analysis by Kaplan-Meier estimator. RESULTS: We found that two gene clusters (_1, _2) are favorably, while two (_3, _4) are unfavorably, associated with patients' survival with HNSCC. Notably, most genes on the top lists of cluster_2 are associated with B cells. A gene expression signature with combined genes from cluster_2 and _4 was further determined to be associated with HNSCC survival rate. CONCLUSION: Our work strongly supported a favorable role of B cells in patients' survival with HNSCC and identified a novel coexpressed gene signature as prognostic biomarker for patients' survival with HNSCC estimation.


Subject(s)
Head and Neck Neoplasms , Biomarkers, Tumor/genetics , Cluster Analysis , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Humans , Multigene Family , Prognosis , RNA-Seq , Squamous Cell Carcinoma of Head and Neck/genetics
18.
Nat Nanotechnol ; 17(2): 206-216, 2022 02.
Article in English | MEDLINE | ID: mdl-34916656

ABSTRACT

Malignant pleural effusion (MPE) is indicative of terminal malignancy with a uniformly fatal prognosis. Often, two distinct compartments of tumour microenvironment, the effusion and disseminated pleural tumours, co-exist in the pleural cavity, presenting a major challenge for therapeutic interventions and drug delivery. Clinical evidence suggests that MPE comprises abundant tumour-associated myeloid cells with the tumour-promoting phenotype, impairing antitumour immunity. Here we developed a liposomal nanoparticle loaded with cyclic dinucleotide (LNP-CDN) for targeted activation of stimulators of interferon genes signalling in macrophages and dendritic cells and showed that, on intrapleural administration, they induce drastic changes in the transcriptional landscape in MPE, mitigating the immune cold MPE in both effusion and pleural tumours. Moreover, combination immunotherapy with blockade of programmed death ligand 1 potently reduced MPE volume and inhibited tumour growth not only in the pleural cavity but also in the lung parenchyma, conferring significantly prolonged survival of MPE-bearing mice. Furthermore, the LNP-CDN-induced immunological effects were also observed with clinical MPE samples, suggesting the potential of intrapleural LNP-CDN for clinical MPE immunotherapy.


Subject(s)
B7-H1 Antigen/pharmacology , Drug Delivery Systems , Nanoparticles/chemistry , Pleural Effusion, Malignant/drug therapy , Adaptive Immunity/drug effects , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/chemistry , B7-H1 Antigen/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Dendritic Cells/drug effects , Humans , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate/drug effects , Immunotherapy , Interferons/genetics , Mice , Nanoparticles/therapeutic use , Pleural Cavity/drug effects , Pleural Cavity/immunology , Pleural Cavity/pathology , Pleural Effusion, Malignant/genetics , Pleural Effusion, Malignant/immunology , Pleural Effusion, Malignant/pathology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
19.
Front Oncol ; 11: 734959, 2021.
Article in English | MEDLINE | ID: mdl-34956864

ABSTRACT

BACKGROUND: Triggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors. METHODS: Breast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student's t-test and Chi-square test. RESULTS: In pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically "hot" tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions. CONCLUSIONS: Together, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.

20.
Cells ; 10(9)2021 09 20.
Article in English | MEDLINE | ID: mdl-34572134

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.


Subject(s)
Aldehyde Dehydrogenase 1 Family/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Macrophages/immunology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Retinal Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/immunology , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Movement , Cell Proliferation , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/metabolism , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/immunology , Tretinoin/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...