Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(20): eadn1115, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748807

ABSTRACT

The hydroxyl radical (OH) is the central oxidant in Earth's troposphere, but its temporal variability is poorly understood. We combine 2012-2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene. Furthermore, while global mean OH decreases during El Niño, we show that near-field effects over tropical rainforests can alternate between high/low OH anomalies due to opposing fire and biogenic emission impacts. Results provide insights into how atmospheric oxidation will evolve with changing emissions and climate.

2.
Environ Sci Technol ; 58(22): 9701-9713, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780660

ABSTRACT

Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.


Subject(s)
Hydrology , Nitrous Oxide , Rivers , Rivers/chemistry , Groundwater/chemistry , Ecosystem , Nitrification , Soil/chemistry , Environmental Monitoring
3.
Environ Sci Technol Lett ; 10(10): 844-850, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37840817

ABSTRACT

Schools may have important impacts on children's exposure to ambient air pollution, yet ambient air quality at schools is not consistently tracked. We characterize ambient air quality at home and school locations in the United States using satellite-based empirical model (i.e., land use regression) estimates of outdoor annual nitrogen dioxide (NO2). We report disparities by race-ethnicity and impoverishment status, and investigate differences by level of urbanicity. Average NO2 levels at home and school for racial-ethnic minoritized students are 18-22% higher than average (and 37-39% higher than for non-Hispanic, white students). Minoritized students are less likely than their white peers to live (0.55 times) and attend school (0.58 times) in areas below the World Health Organization's NO2 guideline. Predominantly minoritized schools (i.e., >50% minoritized students) are less likely than predominantly white schools (0.43 times) to be in locations below the guideline. Income and race-ethnicity impacts are intertwined, yet in large cities, racial disparities persist after controlling for income.

4.
PLoS One ; 17(5): e0268714, 2022.
Article in English | MEDLINE | ID: mdl-35613109

ABSTRACT

Each year, millions of premature deaths worldwide are caused by exposure to outdoor air pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these deaths relies on air quality modeling for estimating changes in PM2.5 concentrations from many scenarios at high spatial resolution. However, air quality modeling typically has substantial requirements for computation and expertise, which limits policy design, especially in countries where most PM2.5-related deaths occur. Lower requirement reduced-complexity models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed for the United States, to simulate annual-average primary and secondary PM2.5 concentrations across a global-through-urban spatial domain: "Global InMAP". Global InMAP uses a variable resolution grid, with horizontal grid cell widths ranging from 500 km in remote locations to 4km in urban locations. We evaluate Global InMAP performance against both measurements and a state-of-the-science chemical transport model, GEOS-Chem. Against measurements, InMAP predicts total PM2.5 concentrations with a normalized mean error of 62%, compared to 41% for GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant concentrations with a normalized mean bias of 59%-121%, which is sufficient for initial policy assessment and scoping. Global InMAP can be run on a desktop computer; simulations here took 2.6-8.4 hours. This work presents a global, open-source, reduced-complexity air quality model to facilitate policy assessment worldwide, providing a screening tool for reducing air pollution-related deaths where they occur most.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Mortality, Premature , Particulate Matter/analysis , United States
5.
Atmos Chem Phys ; 22(21): 14037-14058, 2022.
Article in English | MEDLINE | ID: mdl-37476609

ABSTRACT

The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68°38' N, 149°36' W), in the Alaskan Arctic tundra during May-June 2019. We employ a custom nested grid version of the GEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) biogenic emissions for Alaska at 0.25° × 0.3125° resolution, to interpret the observations in terms of their constraints on BVOC emissions, total reactive organic carbon (ROC) composition, and calculated OH reactivity (OHr) in this environment. We find total ambient mole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s-1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s-1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra.

6.
ACS Earth Space Chem ; 5(6): 1436-1454, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34164590

ABSTRACT

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.

7.
Agric For Meteorol ; 2962021 Jan 15.
Article in English | MEDLINE | ID: mdl-33692602

ABSTRACT

Eddy covariance (EC) measurements of ecosystem-atmosphere carbon dioxide (CO2) exchange provide the most direct assessment of the terrestrial carbon cycle. Measurement biases for open-path (OP) CO2 concentration and flux measurements have been reported for over 30 years, but their origin and appropriate correction approach remain unresolved. Here, we quantify the impacts of OP biases on carbon and radiative forcing budgets for a sub-boreal wetland. Comparison with a reference closed-path (CP) system indicates that a systematic OP flux bias (0.54 µmol m-2 s-1) persists for all seasons leading to a 110% overestimate of the ecosystem CO2 sink (cumulative error of 78 gC m-2). Two potential OP bias sources are considered: Sensor-path heat exchange (SPHE) and analyzer temperature sensitivity. We examined potential OP correction approaches including: i) Fast temperature measurements within the measurement path and sensor surfaces; ii) Previously published parameterizations; and iii) Optimization algorithms. The measurements revealed year-round average temperature and heat flux gradients of 2.9 °C and 16 W m-2 between the bottom sensor surfaces and atmosphere, indicating SPHE-induced OP bias. However, measured SPHE correlated poorly with the observed differences between OP and CP CO2 fluxes. While previously proposed nominally universal corrections for SPHE reduced the cumulative OP bias, they led to either systematic under-correction (by 38.1 gC m-2) or to systematic over-correction (by 17-37 gC m-2). The resulting budget errors exceeded CP random uncertainty and change the sign of the overall carbon and radiative forcing budgets. Analysis of OP calibration residuals as a function of temperature revealed a sensitivity of 5 µmol m-3 K-1. This temperature sensitivity causes CO2 calibration errors proportional to sample air fluctuations that can offset the observed growing season flux bias by 50%. Consequently, we call for a new OP correction framework that characterizes SPHE- and temperature-induced CO2 measurement errors.

8.
J Air Waste Manag Assoc ; 71(7): 866-889, 2021 07.
Article in English | MEDLINE | ID: mdl-33689601

ABSTRACT

The Lake Michigan Ozone Study 2017 (LMOS 2017) in May and June 2017 enabled study of transport, emissions, and chemical evolution related to ozone air pollution in the Lake Michigan airshed. Two highly instrumented ground sampling sites were part of a wider sampling strategy of aircraft, shipborne, and ground-based mobile sampling. The Zion, Illinois site (on the coast of Lake Michigan, 67 km north of Chicago) was selected to sample higher NOx air parcels having undergone less photochemical processing. The Sheboygan, Wisconsin site (on the coast of Lake Michigan, 211 km north of Chicago) was selected due to its favorable location for the observation of photochemically aged plumes during ozone episodes involving southerly winds with lake breeze. The study encountered elevated ozone during three multiday periods. Daytime ozone episode concentrations at Zion were 60 ppb for ozone, 3.8 ppb for NOx, 1.2 ppb for nitric acid, and 8.2 µg m-3 for fine particulate matter. At Sheboygan daytime, ozone episode concentrations were 60 ppb for ozone, 2.6 ppb for NOx, and 3.0 ppb for NOy. To facilitate informed use of the LMOS 2017 data repository, we here present comprehensive site description, including airmass influences during high ozone periods of the campaign, overview of meteorological and pollutant measurements, analysis of continuous emission monitor data from nearby large point sources, and characterization of local source impacts from vehicle traffic, large point sources, and rail. Consistent with previous field campaigns and the conceptual model of ozone episodes in the area, trajectories from the southwest, south, and lake breeze trajectories (south or southeast) were overrepresented during pollution episodes. Local source impacts from vehicle traffic, large point sources, and rail were assessed and found to represent less than about 15% of typical concentrations measured. Implications for model-observation comparison and design of future field campaigns are discussed.Implications: The Lake Michigan Ozone Study 2017 (LMOS 2017) was conducted along the western shore of Lake Michigan, and involved two well-instrumented coastal ground sites (Zion, IL, and Sheboygan, WI). LMOS 2017 data are publicly available, and this paper provides detailed site characterization and measurement summary to enable informed use of repository data. Minor local source impacts were detected but were largely confined to nighttime conditions of less interest for ozone episode analysis and modeling. The role of these sites in the wider field campaign and their detailed description facilitates future campaign planning, informed data repository use, and model-observation comparison.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Lakes , Meteorology , Michigan , Ozone/analysis
9.
Sci Total Environ ; 769: 144693, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33736238

ABSTRACT

The widespread and rapid social and economic changes from Covid-19 response might be expected to dramatically improve air quality. However, national monitoring data from the US Environmental Protection Agency for criteria pollutants (PM2.5, ozone, NO2, CO, PM10) provide inconsistent support for that expectation. Specifically, during stay-at-home orders, average PM2.5 levels were slightly higher (~10% of its multi-year interquartile range [IQR]) than expected; average ozone, NO2, CO, and PM10 levels were slightly lower (~30%, ~20%, ~27%, and ~1% of their IQR, respectively) than expected. The timing of peak anomaly, relative to the stay-at-home orders, varied by pollutant (ozone: 2 weeks before; NO2, CO: 3 weeks after; PM10: 2 weeks after); but, by 5-6 weeks after stay-at-home orders, the concentration anomalies appear to have ended. For PM2.5, ozone, CO, and PM10, no US state had lower-than-expected pollution levels for all weeks during stay-at-home-orders; for NO2, only Arizona had lower-than-expected levels for all weeks during stay-at-home orders. Our findings show that the enormous changes from the Covid-19 response have not lowered PM2.5 levels across the US beyond their normal range of variability; for ozone, NO2, CO, and PM10 concentrations were lowered but the reduction was modest and transient.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Arizona , Humans , Particulate Matter/analysis , SARS-CoV-2
10.
Atmos Chem Phys ; 21(2): 951-971, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33613665

ABSTRACT

We apply airborne measurements across three seasons (summer, winter and spring 2017-2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16-23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14-17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼30 %) seasonal discrepancies for dairies and hog farms (with >40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.

11.
Bull Am Meteorol Soc ; 102(12): E2207-E2225, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35837596

ABSTRACT

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO x = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9-12 June, and 14-16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.

12.
Nature ; 586(7828): 248-256, 2020 10.
Article in English | MEDLINE | ID: mdl-33028999

ABSTRACT

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Subject(s)
Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Agriculture , Atmosphere/chemistry , Crops, Agricultural/metabolism , Human Activities , Internationality , Nitrogen/analysis , Nitrogen/metabolism
13.
Nature ; 585(7824): 225-233, 2020 09.
Article in English | MEDLINE | ID: mdl-32908268

ABSTRACT

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Subject(s)
Atmosphere/chemistry , Butadienes/analysis , Butadienes/chemistry , Geographic Mapping , Hemiterpenes/analysis , Hemiterpenes/chemistry , Satellite Imagery , Africa , Australia , Brazil , Datasets as Topic , El Nino-Southern Oscillation , Formaldehyde/chemistry , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Nitrogen Cycle , Nitrogen Oxides/analysis , Nitrogen Oxides/chemistry , Oxidation-Reduction , Seasons , Southeastern United States
14.
Sci Data ; 7(1): 148, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433468

ABSTRACT

Natural emissions of air pollutants from the surface play major roles in air quality and climate change. In particular, nitrogen oxides (NOx) emitted from soils contribute ~15% of global NOx emissions, sea salt aerosols are a major player in the climate and chemistry of the marine atmosphere, and biogenic emissions are the dominant source of non-methane volatile organic compounds at the global scale. These natural emissions are often estimated using nonlinear parameterizations, which are sensitive to the horizontal resolutions of inputted meteorological and ancillary data. Here we use the HEMCO model to compute these emissions worldwide at horizontal resolutions of 0.5° lat. × 0.625° lon. for 1980-2017 and 0.25° lat. × 0.3125° lon. for 2014-2017. We further offer the respective emissions at lower resolutions, which can be used to evaluate the impacts of resolution on estimated global and regional emissions. Our long-term high-resolution emission datasets offer useful information to study natural pollution sources and their impacts on air quality, climate, and the carbon cycle.

15.
Geophys Res Lett ; 47(17)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-33612875

ABSTRACT

Peatlands are among the largest natural sources of atmospheric methane (CH4) worldwide. Peatland emissions are projected to increase under climate change, as rising temperatures and shifting precipitation accelerate microbial metabolic pathways favorable for CH4 production. However, how these changing environmental factors will impact peatland emissions over the long term remains unknown. Here, we investigate a novel data set spanning an exceptionally long 11 years to analyze the influence of soil temperature and water table elevation on peatland CH4 emissions. We show that higher water tables dampen the springtime increases in CH4 emissions as well as their subsequent decreases during late summer to fall. These results imply that any hydroclimatological changes in northern peatlands that shift seasonal water availability from winter to summer will increase annual CH4 emissions, even if temperature remains unchanged. Therefore, advancing hydrological understanding in peatland watersheds will be crucial for improving predictions of CH4 emissions.

16.
Biogeosciences ; 17(23): 6219-6236, 2020.
Article in English | MEDLINE | ID: mdl-35222652

ABSTRACT

Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatile-organic-compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38' N, 149°36' W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (~ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 µgC m-2 h-1 (mean of 85 µgC m-2 h-1) and monoterpene emission rates remained, on average, below 1 µgC m-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215 % emission increase in response to a 3-4°C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30°C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.

17.
Atmos Chem Phys ; 20(13): 7753-7781, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33688335

ABSTRACT

The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO y concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NO y . The severe model overestimate of NO y during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NO y partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3% to 9% and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.

18.
J Geophys Res Biogeosci ; 125(1)2020 Jan.
Article in English | MEDLINE | ID: mdl-33614366

ABSTRACT

Agriculture and waste are thought to account for half or more of the U.S. anthropogenic methane source. However, current bottom-up inventories contain inherent uncertainties from extrapolating limited in situ measurements to larger scales. Here, we employ new airborne methane measurements over the U.S. Corn Belt and Upper Midwest, among the most intensive agricultural regions in the world, to quantify emissions from an array of key agriculture and waste point sources. Nine of the largest concentrated animal feeding operations in the region and two sugar processing plants were measured, with multiple revisits during summer (August 2017), winter (January 2018), and spring (May-June 2018). We compare the top-down fluxes with state-of-science bottom-up estimates informed by U.S. Environmental Protection Agency methodology and site-level animal population and management practices. Top-down point source emissions are consistent with bottom-up estimates for beef concentrated animal feeding operations but moderately lower for dairies (by 37% on average) and significantly lower for sugar plants (by 80% on average). Swine facility results are more variable. The assumed bottom-up seasonality for manure methane emissions is not apparent in the aircraft measurements, which may be due to on-site management factors that are difficult to capture accurately in national-scale inventories. If not properly accounted for, such seasonal disparities could lead to source misattribution in top-down assessments of methane fluxes.

19.
Commun Earth Environ ; 1: 44, 2020.
Article in English | MEDLINE | ID: mdl-33615239

ABSTRACT

Isoprene is emitted from the biosphere into the atmosphere, and may strengthen the defense mechanisms of plants against oxidative and thermal stress. Once in the atmosphere, isoprene is rapidly oxidized, either to isoprene-hydroxy-hydroperoxides (ISOPOOH) at low levels of nitrogen oxides, or to methyl vinyl ketone (MVK) and methacrolein at high levels. Here we combine uptake rates and deposition velocities that we obtained in laboratory experiments with observations in natural forests to show that 1,2-ISOPOOH deposits rapidly into poplar leaves. There, it is converted first to cytotoxic MVK and then most probably through alkenal/ one oxidoreductase (AOR) to less toxic methyl ethyl ketone (MEK). This detoxification process is potentially significant globally because AOR enzymes are ubiquitous in terrestrial plants. Our simulations with a global chemistry-transport model suggest that around 6.5 Tg yr- of MEK are re-emitted to the atmosphere. This is the single largest MEK source presently known, and recycles 1.5% of the original isoprene flux. Eddy covariance flux measurements of isoprene and MEK over different forest ecosystems confirm that MEK emissions can reach 1-2% those of isoprene. We suggest that detoxification processes in plants are one of the most important sources of oxidized volatile organic compounds in the atmosphere.

20.
Nat Commun ; 10(1): 3811, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31444348

ABSTRACT

Isoprene is the atmosphere's most important non-methane organic compound, with key impacts on atmospheric oxidation, ozone, and organic aerosols. In-situ isoprene measurements are sparse, and satellite-based constraints have employed an indirect approach using its oxidation product formaldehyde, which is affected by non-isoprene sources plus uncertainty and spatial smearing in the isoprene-formaldehyde relationship. Direct global isoprene measurements are therefore needed to better understand its sources, sinks, and atmospheric impacts. Here we show that the isoprene spectral signatures are detectable from space using the satellite-borne Cross-track Infrared Sounder (CrIS), develop a full-physics retrieval methodology for quantifying isoprene abundances from these spectral features, and apply the algorithm to CrIS measurements over Amazonia. The results are consistent with model output and in-situ data, and establish the feasibility of direct global space-based isoprene measurements. Finally, we demonstrate the potential for combining space-based measurements of isoprene and formaldehyde to constrain atmospheric oxidation over isoprene source regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...