Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(2): 156-162, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793438

ABSTRACT

Protein tyrosine phosphatase SHP2 is an oncogenic protein that can regulate different cytokine receptor and receptor tyrosine kinase signaling pathways. We report here the identification of a novel series of SHP2 allosteric inhibitors having an imidazopyrazine 6,5-fused heterocyclic system as the central scaffold that displays good potency in enzymatic and cellular assays. SAR studies led to the identification of compound 8, a highly potent SHP2 allosteric inhibitor. X-ray studies showed novel stabilizing interactions with respect to known SHP2 inhibitors. Subsequent optimization allowed us to identify analogue 10, which possesses excellent potency and a promising PK profile in rodents.

2.
Bioorg Med Chem ; 57: 116631, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35123179

ABSTRACT

Zika virus (ZIKV) is a member of the Flaviviridae family that can cause neurological disorders and congenital malformations. The NS2B-NS3 viral serine protease is an attractive target for the development of new antiviral agents against ZIKV. We report here a SAR study on a series of substrate-like linear tripeptides that inhibit in a non-covalent manner the NS2B-NS3 protease. Optimization of the residues at positions P1, P2, P3 and of the N-terminal and C-terminal portions of the tripeptide allowed the identification of inhibitors with sub-micromolar potency with phenylglycine as arginine-mimicking group and benzylamide as C-terminal fragment. Further SAR exploration and application of these structural changes to a series of peptides having a 4-substituted phenylglycine residue at the P1 position led to potent compounds showing double digit nanomolar inhibition of the Zika protease (IC50 = 30 nM) with high selectivity against trypsin-like proteases and the proteases of other flavivirus, such as Dengue 2 virus (DEN2V) and West Nile virus (WNV).


Subject(s)
Antiviral Agents/pharmacology , Peptides/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dengue Virus/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , West Nile virus/drug effects , Zika Virus/enzymology
3.
J Pharm Biomed Anal ; 210: 114566, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35042144

ABSTRACT

Lipidation, a common strategy to improve half-life of therapeutic peptides, affects their tendency to oligomerize, their interaction with plasmatic proteins, and their catabolism. In this work, we have leveraged the use of NMR and SPR spectroscopy to elucidate oligomerization propensity and albumin interaction of different analogs of the two marketed lipidated GLP-1 agonists liraglutide and semaglutide. As most lipidated therapeutic peptides are administered by subcutaneous injection, we have also assessed in vitro their catabolism in the SC tissue using the LC-HRMS-based SCiMetPep assay. We observed that oligomerization had a shielding effect against catabolism. At the same time, binding to albumin may provide only limited protection from proteolysis due to the higher unbound peptide fraction present in the subcutaneous compartment with respect to the plasma. Finally, identification of catabolites in rat plasma after SC dosing of semaglutide showed a good correlation with the in vitro data, with Tyr19-Leu20 being the major cleavage site. Early characterization of the complex interplay between oligomerization, albumin binding, and catabolism at the injection site is essential for the synthesis of lipidated peptides with good pharmacokinetic profiles.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Albumins , Animals , Half-Life , Hypoglycemic Agents , Liraglutide , Peptides , Rats
4.
Free Radic Biol Med ; 162: 243-254, 2021 01.
Article in English | MEDLINE | ID: mdl-33096251

ABSTRACT

Oxidative stress has been associated with pathogenesis in several diseases including Huntington's disease (HD), a neurodegenerative disorder caused by a mutation in the huntingtin gene. Oxidative stress induced reactive oxygen species (ROS) are normally controlled at the cellular level by the nuclear factor (erythroid-derived 2)-like 2 (NRF2) a transcription factor that regulates the expression of various antioxidants and detoxifying proteins. Normally NRF2 is largely inactivated in the cytoplasm by the Kelch-like ECH-associated protein 1 (KEAP1)/Cullin-3 (CUL3) mediated ubiquitination and subsequent proteosomal degradation. In the presence of ROS, KEAP1 sensor cysteines are directly or indirectly engaged resulting in NRF2 release, nuclear translocation, and activation of its target genes. Consequently the activation of NRF2 by a small-molecule drug may have the therapeutic potential to control oxidative stress by upregulation of the endogenous antioxidant responses. Here we attempted to validate the use of a reversible non-acidic KEAP1 binder (Compound 2) to activate NRF2 with better cellular activity than similar acidic compounds. When tested head to head with sulforaphane, a covalent KEAP1 binder, Compound 2 had a similar ability to induce the expression of genes known to be modulated by NRF2 in neurons and astrocytes isolated from wild-type rat, wild type mouse and zQ175 (an HD mouse model) embryos. However, while sulforaphane also negatively affected genes involved in neurotoxicity in these cells, Compound 2 showed a clean profile suggesting its mode of action has lower off-target activity. We show that Compound 2 was able to protect cells from an oxidative insult by preserving the ATP content and the mitochondrial potential of primary astrocytes, consistent with the hypothesis that neurotoxicity induced by oxidative stress can be limited by upregulation of innate antioxidant response.


Subject(s)
Antioxidants , Astrocytes , Huntington Disease , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neurons , Animals , Astrocytes/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurons/metabolism , Oxidative Stress , Rats
5.
Bioorg Med Chem ; 28(21): 115738, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33065433

ABSTRACT

Inhibition of KEAP1-NRF2 protein-protein interaction is considered a promising strategy to selectively and effectively activate NRF2, a transcription factor which is involved in several pathologies such as Huntington's disease (HD). A library of linear peptides based on the NRF2-binding motifs was generated on the nonapeptide lead Ac-LDEETGEFL-NH2 spanning residues 76-84 of the Neh2 domain of NRF2 with the aim to replace E78, E79 and E82 with non-acidic amino acids. A deeper understanding of the features and accessibility of the T80 subpocket was also targeted by structure-based design. Approaches to improve cell permeability were investigated using both different classes of cyclic peptides and conjugation to cell-penetrating peptides. This insight will guide future design of macrocycles, peptido-mimetics and, most importantly, small neutral brain-penetrating molecules to evaluate whether NRF2 activators have utility in HD.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Peptides, Cyclic/chemistry , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Drug Design , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Molecular Dynamics Simulation , NF-E2-Related Factor 2/antagonists & inhibitors , Peptides/metabolism , Peptides/pharmacology , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Protein Binding , Structure-Activity Relationship
6.
PLoS Negl Trop Dis ; 14(5): e0008339, 2020 05.
Article in English | MEDLINE | ID: mdl-32437349

ABSTRACT

Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypanothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypanosoma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461') and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus representing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Toluene/analogs & derivatives , Trypanosoma brucei brucei/drug effects , Antiprotozoal Agents/isolation & purification , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , NADH, NADPH Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Toluene/isolation & purification , Toluene/pharmacology , Trypanosoma brucei brucei/enzymology
7.
PLoS Negl Trop Dis ; 12(11): e0006969, 2018 11.
Article in English | MEDLINE | ID: mdl-30475811

ABSTRACT

Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against Leishmaniasis. This enzyme is fundamental for parasite survival in the host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize hydrogen peroxide produced by host macrophages during infection. In order to identify new lead compounds against Leishmania we developed and validated a new luminescence-based high-throughput screening (HTS) assay that allowed us to screen a library of 120,000 compounds. We identified a novel chemical class of TR inhibitors, able to kill parasites with an IC50 in the low micromolar range. The X-ray crystal structure of TR in complex with a compound from this class (compound 3) allowed the identification of its binding site in a pocket at the entrance of the NADPH binding site. Since the binding site of compound 3 identified by the X-ray structure is unique, and is not present in human homologs such as glutathione reductase (hGR), it represents a new target for drug discovery efforts.


Subject(s)
Antiprotozoal Agents/chemistry , Enzyme Inhibitors/chemistry , Leishmania/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Leishmania/drug effects , Leishmania/genetics , Leishmaniasis/parasitology , Models, Molecular , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADP/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
8.
SLAS Discov ; 23(9): 941-950, 2018 10.
Article in English | MEDLINE | ID: mdl-29932789

ABSTRACT

Glycosylation is a key posttranslational modification that tags protein to membranes, organelles, secretory pathways, and degradation. Aberrant protein glycosylation is present both in acquired diseases, such as cancer and neurodegeneration, and in congenital disorders of glycosylation (CDGs). Consequently, the ability to interrogate the activity of enzymes that can modify protein glycan moieties is key for drug discovery projects aimed at finding modulators of these enzymes. To date, low-throughput technologies such as SDS-PAGE and mass spectrometry have been used, which are not suitable for compound screening in drug discovery. In the present work, a broadly applicable time-resolved fluorescence resonance energy transfer (TR-FRET) assay was developed that can determine the activity of endoglycosidase enzymes in high-throughput formats. The assay was validated using PNGaseF and EndoH as tool deglycosylases. Even though the current setup is based on the recognition of glycans that bind concanavalin A (ConA), the assay concept can be adapted to glycans that bind other lectins.


Subject(s)
Biological Assay/methods , Enzymes/metabolism , Polysaccharides/metabolism , Drug Discovery , Enzyme Activation , Fluorescence Resonance Energy Transfer , Glycosylation , Humans , Surface Plasmon Resonance
9.
Arch Biochem Biophys ; 631: 31-41, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28801166

ABSTRACT

Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.


Subject(s)
Antioxidants/pharmacology , Drug Discovery/methods , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Protein Interaction Maps/drug effects , Amino Acid Sequence , Antioxidants/chemistry , Binding Sites , Fluorescence Resonance Energy Transfer/methods , Humans , Kelch Repeat/drug effects , Kelch-Like ECH-Associated Protein 1/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Oxidative Stress/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Surface Plasmon Resonance/methods
10.
SLAS Discov ; 22(7): 897-905, 2017 08.
Article in English | MEDLINE | ID: mdl-28346095

ABSTRACT

Pseudomonas infections are common among hospitalized, immunocompromised, and chronic lung disease patients. These infections are recalcitrant to common antibacterial therapies due to inherent antibiotic resistance. To meet the need of new anti- Pseudomonas drugs, a sensitive, homogenous, and robust assay was developed with the aim of identifying inhibitors of acyl-coenzyme A synthetases (ACSs) from Pseudomonas. Given the importance of fatty acids for in vivo nutrition of Pseudomonas, such inhibitors might have the potential to reduce the bacterial fitness during infection. The assay, based on a coupled reaction between the Pseudomonas spp. ACS and the firefly luciferase, allowed the identification of three classes of inhibitors by screening of a diverse compound collection. These compounds were confirmed to reversibly bind ACS with potencies in the micromolar range. Two classes were found to compete with acyl-coenzyme A, while the third one was competitive with fatty acid binding. Although these compounds inhibit the bacterial ACS in cell-free assays, they show modest or no effect on Pseudomonas growth in vitro.


Subject(s)
Acyl Coenzyme A/antagonists & inhibitors , Acyl Coenzyme A/metabolism , Enzyme Inhibitors/pharmacology , Pseudomonas/metabolism , Coenzyme A Ligases/metabolism , Fatty Acids/metabolism , High-Throughput Screening Assays/methods , Luciferases, Firefly/metabolism , Pseudomonas Infections/microbiology
11.
PLoS One ; 10(8): e0135278, 2015.
Article in English | MEDLINE | ID: mdl-26313909

ABSTRACT

Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2). Antigen binding regions were created by designing combinatorial libraries into the structural loops and Abdurins were selected using phage display methods. Initial binders were reformatted into new maturation libraries and low nanomolar binders were isolated using cell-free DNA display, CIS display. Further characterization confirmed binding of the Abdurins to both human and murine EphA2 proteins and exclusively to cell lines that expressed EphA2, followed by rapid internalization. Two different EphA2 binders were labeled with 64Cu, using a bifunctional MeCOSar chelator, and administered to mice bearing tumors from transplanted human prostate cancer cells, followed by PET/CT imaging. The anti-EphA2 Abdurins localized in the tumors as early as 4 hours after injection and continued to accumulate up to 48 hours when the imaging was completed. These data demonstrate the ability to isolate high affinity binders from the engineered Abdurin scaffold, which retain a long serum half-life, and specifically target tumors in a xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Protein Engineering/methods , Receptor, EphA2/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Peptide Library , Positron-Emission Tomography , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
12.
Infect Immun ; 82(6): 2448-59, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686057

ABSTRACT

Staphylococcus lugdunensis is a coagulase-negative staphylococcus that is a commensal of humans and an opportunistic pathogen. It can cause a spectrum of infections, including those that are associated with the ability to form biofilm, such as occurs with endocarditis or indwelling medical devices. The genome sequences of two strains revealed the presence of orthologues of the ica genes that are responsible for synthesis of poly-N-acetylglucosamine (PNAG) that is commonly associated with biofilm in other staphylococci. However, we discovered that biofilm formed by a panel of S. lugdunensis isolates growing in iron-restricted medium was susceptible to degradation by proteases and not by metaperiodate, suggesting that the biofilm matrix comprised proteins and not PNAG. When the iron concentration was raised to 1 mM biofilm formation by all strains tested was greatly reduced. A mutant of strain N920143 lacking the entire locus that encodes iron-regulated surface determinant (Isd) proteins was defective in biofilm formation under iron-limited conditions. An IsdC-null mutant was defective, whereas IsdK, IsdJ, and IsdB mutants formed biofilm to the same level as the parental strain. Expression of IsdC was required both for the primary attachment to unconditioned polystyrene and for the accumulation phase of biofilm involving cell-cell interactions. Purified recombinant IsdC protein formed dimers in solution and Lactococcus lactis cells expressing only IsdC adhered to immobilized recombinant IsdC but not to IsdJ, IsdK, or IsdB. This is consistent with a specific homophilic interaction between IsdC molecules on neighboring cells contributing to accumulation of S. lugdunensis biofilm in vivo.


Subject(s)
Bacterial Proteins/physiology , Biofilms/growth & development , Carrier Proteins/physiology , Iron/metabolism , Staphylococcal Infections/microbiology , Staphylococcus lugdunensis/physiology , Analysis of Variance , Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Blotting, Western , Carrier Proteins/metabolism , Culture Media/chemistry , Gene Expression Regulation, Bacterial , Humans , Recombinant Proteins/metabolism
13.
PLoS One ; 8(6): e66901, 2013.
Article in English | MEDLINE | ID: mdl-23805283

ABSTRACT

Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblotting revealed that the N-terminal A domain of SpsD bound fibrinogen, fibronectin, elastin and cytokeratin 10. SpsD also interfered with thrombin-induced fibrinogen coagulation and blocked ADP-induced platelet aggregation. The binding site for SpsD was mapped to residues 395-411 in the fibrinogen γ-chain, while binding sites in fibronectin were localized to the N- and C-terminal regions. SpsD also bound to glycine- and serine-rich omega loops within the C-terminal tail region of cytokeratin 10. Ligand binding studies using SpsD variants lacking the C-terminal segment or containing an amino-acid substitution in the putative ligand binding site provided insights into interaction mechanism of SpsD with the different ligands. Together these data demonstrate the multi-ligand binding properties of SpsD and illustrate some interesting differences in the variety of ligands bound by SpsD and related proteins from S. aureus.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Host-Pathogen Interactions/genetics , Staphylococcus/metabolism , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Dogs , Elastin/chemistry , Elastin/metabolism , Extracellular Matrix Proteins/chemistry , Fibrinogen/chemistry , Fibrinogen/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Humans , Keratin-10/chemistry , Keratin-10/metabolism , Ligands , Mutagenesis, Site-Directed , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
14.
Int J Artif Organs ; 34(9): 799-810, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22094559

ABSTRACT

Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.


Subject(s)
Immunity, Innate , Staphylococcal Infections/prevention & control , Staphylococcus aureus/immunology , Toll-Like Receptors/metabolism , Animals , Bacterial Proteins/metabolism , Humans , Inflammasomes/immunology , Ligands , Signal Transduction , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL