Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;17(3): 300-307, 2011. graf, tab
Article in English | LILACS | ID: lil-597229

ABSTRACT

Cutaneous leishmaniasis is an infectious disease caused by protozoans of the genus Leishmania, which is transmitted through the bite of hematophagous insects of the genus Lutzomyia. This study aimed at testing in vitro the phototoxic effect of aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability of Leishmania major and Leishmania braziliensis. Stationary phase promastigote forms were treated with AlPcS4 at 1.0 µM and 10.0 µM and incubated for one hour. Then 659 nm laser was applied at 5 and 10 J/cm². Parasite viability was determined by differential count using the trypan blue dye exclusion method and by monitoring growth curves for nine days. Trypan blue exclusion assay showed a significant reduction of viable parasites compared to controls, L. major seemed more sensitive to the toxic effects of AlPcS4 in the dark. The most effective photodynamic therapy (PDT) was obtained with AlPcS4 at 10.0 µM and 10 J/cm² whereas L. braziliensis showed the highest mortality rate after treatment.


Subject(s)
Animals , Antiparasitic Agents , Leishmania braziliensis , Leishmania major , Leishmaniasis, Cutaneous , Photochemotherapy , Photosensitizing Agents
2.
Int Immunopharmacol ; 8(4): 603-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18328453

ABSTRACT

BACKGROUND AND OBJECTIVE: Low-level laser therapy (LLLT) is a known modulator of inflammatory process. Herein we studied the effect of 660 nm diode laser on mRNA levels of neutrophils anti-apoptotic factors in lipopolysaccharide (LPS)-induced lung inflammation. STUDY DESIGN/METHODOLOGY: Mice were divided into 8 groups (n=7 for each group) and irradiated with energy dosage of 7.5 J/cm(2). The Bcl-xL and A1 mRNA levels in neutrophils were evaluated by Real Time-PCR (RT-PCR). The animals were irradiated after exposure time of LPS. RESULTS: LLLT and an inhibitor of NF-kappaB nuclear translocation (BMS 205820) attenuated the mRNA levels of Bcl-xL and A1 mRNA in lung neutrophils obtained from mice subjected to LPS-induced inflammation. CONCLUSION: LLLT reduced the levels of anti-apoptotic factors in LPS inflamed mice lung neutrophils by an action mechanism in which the NF-kappaB seems to be involved.


Subject(s)
Low-Level Light Therapy , Lung/immunology , Lung/radiation effects , NF-kappa B/metabolism , Neutrophils/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism , Animals , Inflammation , Lipopolysaccharides/immunology , Male , Mice , Minor Histocompatibility Antigens , Neutrophils/radiation effects , Peptides/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/radiation effects
3.
Article in English | VETINDEX | ID: vti-443136

ABSTRACT

Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml) for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

4.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;13(1): 56-68, 2007. ilus
Article in English | LILACS | ID: lil-444611

ABSTRACT

Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml) for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.


Subject(s)
Animals , Male , Female , CHO Cells , Endoplasmic Reticulum , Crotalid Venoms , Apoptosis
5.
An Acad Bras Cienc ; 73(4): 561-8, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11743603

ABSTRACT

The properties of embryonic hybrid cells obtained by fusion of embryonic stem (ES) or teratocarcinoma (TC) cells with differentiated cells are reviewed. Usually, ES-somatic or TC-somatic hybrids retain pluripotent capacity at high levels quite comparable or nearly identical with those of the pluripotent partner. When cultured in vitro, ES-somatic- and TC-somatic hybrid cell clones, as a rule, lose the chromosomes derived from the somatic partner; however, in some clones the autosomes from the ES cell partner were also eliminated, i.e. the parental chromosomes segregated bilaterally in the ES-somatic cell hybrids. This opens up ways for searching correlation between the pluripotent status of the hybrid cells and chromosome segregation patterns and therefore for identifying the particular chromosomes involved in the maintenance of pluripotency. Use of selective medium allows to isolate in vitro the clones of ES-somatic hybrid cells in which "the pluripotent" chromosome can be replaced by "the somatic" counterpart carrying the selectable gene. Unlike the TC-somatic cell hybrids, the ES-somatic hybrids with a near-diploid complement of chromosomes are able to contribute to various tissues of chimeric animals after injection into the blastocoel cavity. Analysis of the chimeric animals showed that the "somatic" chromosome undergoes reprogramming during development. The prospects for the identification of the chromosomes that are involved in the maintenance of pluripotency and its cis- and trans-regulation in the hybrid cell genome are discussed.


Subject(s)
Cell Differentiation/physiology , Hybrid Cells/physiology , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Line/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL