Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
FEBS J ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706230

ABSTRACT

In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.

2.
Arterioscler Thromb Vasc Biol ; 44(3): 620-634, 2024 03.
Article in English | MEDLINE | ID: mdl-38152888

ABSTRACT

BACKGROUND: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS: Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS: We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS: Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.


Subject(s)
Atherosclerosis , Phosphatidylinositol 3-Kinases , Mice , Animals , Humans , Cells, Cultured , Phosphatidylinositol 3-Kinases/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy , Phosphatidylinositol 3-Kinase/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Stress, Mechanical , Human Umbilical Vein Endothelial Cells/metabolism , Mammals
3.
Nat Commun ; 14(1): 8056, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052799

ABSTRACT

Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.


Subject(s)
Renal Insufficiency, Chronic , Sirtuin 1 , Animals , Mice , Humans , Sirtuin 1/genetics , AMP-Activated Protein Kinases , Zebrafish , Autophagy/physiology , Renal Insufficiency, Chronic/genetics , Epithelial Cells/physiology , Kidney
4.
Contact (Thousand Oaks) ; 6: 25152564231217867, 2023.
Article in English | MEDLINE | ID: mdl-38033809

ABSTRACT

Sorting nexins (SNXs) are a family of membrane-binding proteins known to play a critical role in regulating endocytic pathway sorting and endosomal membrane trafficking. Among them, SNX1 and SNX2 are members of the SNX-BAR subfamily and possess a membrane-curvature domain and a phosphoinositide-binding domain, which enables their stabilization at the phosphatidylinositol-3-phosphate (PI3P)-positive surface of endosomes. While their binding to PI3P-positive platforms facilitates interaction with endosomal partners and stabilization at the endosomal membrane, their SNX-BAR region is pivotal for generating membrane tubulation from endosomal compartments. In this context, their primary identified biological roles-and their partnership-are tightly associated with the retromer and endosomal SNX-BAR sorting complex for promoting exit 1 complex trafficking, facilitating the transport of cargoes from early endosomes to the secretory pathway. However, recent literature indicates that these proteins also possess biological functions in other aspects of endosomal features and sorting processes. Notably, SNX2 has been found to regulate endosome-endoplasmic reticulum (ER) contact sites through its interaction with VAP proteins at the ER membrane. Furthermore, data from our laboratory show that SNX1 and SNX2 are involved in the tubulation of early endosomes toward ER sites associated with autophagy initiation during starvation. These findings shed light on a novel role of SNXs in inter-organelle tethering and communication. In this concise review, we will explore the non-retromer functions of SNX1 and SNX2, specifically focusing on their involvement in endosomal membrane dynamics during stress sensing and autophagy-associated processes.

5.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36585258

ABSTRACT

Nutrient deprivation ("starvation") is a major catabolic stress faced by mammalian cells in both pathological and physiological situations. Starvation induces autophagosome biogenesis in the immediate vicinity of ER and leads to lysosome spatial repositioning, but little is known about the consequences of nutritional stress on endosomes. Here, we report that starvation induces tethering of endosomal tubules to ER subregions, fostering autophagosome assembly. We show that this endosomal membrane generation is regulated by sorting nexin 1 (SNX1) protein and is important for the autophagic response. These newly formed SNX1 endosomal tubules establish connections with ER subdomains engaged in early autophagic machinery mobilization. Such endosome-ER transient tethers are regulated by a local dialog between SNX2, an endosomal partner of SNX1, and VAPB, an ER protein associated with autophagy initiation stage regulation. We propose that in a very early response to starvation, SNX1 and SNX2 cooperation induces and regulates endosomal membrane tubulation towards VAPB-positive ER subdomains involved in autophagosome biogenesis, highlighting the contribution of early endosomes in the cellular response to nutritional stress.


Subject(s)
Carrier Proteins , Vesicular Transport Proteins , Animals , Carrier Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Endosomes/metabolism , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mammals/metabolism
7.
Autophagy ; 18(11): 2761-2762, 2022 11.
Article in English | MEDLINE | ID: mdl-35443855

ABSTRACT

Candida albicans (C. albicans) is an opportunistic pathogen causing infections ranging from superficial to life-threatening dissemination, in which C. albicans is able to translocate through the gut barrier into deeper organs. In its filamentous form (hyphae), C. albicans can invade epithelial cells by two mechanisms: epithelial cell-driven endocytosis and C. albicans-driven active penetration of host cell plasma membrane (PM). Autophagic machinery is known to be involved in the epithelial barrier maintenance, especially the intestinal barrier that is continuously challenged by exposure to the gut microbiota or to xenobiotics. The protective role of autophagy during C. albicans infection has been investigated in myeloid cells, however, far less was known regarding its role during infection of epithelial cells. Here, we demonstrated that key proteins of the autophagic machinery and vesicles presenting features of autophagosomes are recruited at C. albicans invasion sites. These events are associated with host PM damage caused by the active penetration of C. albicans. We showed that ATG5 and ATG16L1 proteins contribute to PM repair mediated by lysosomal membrane exocytosis and participate in protection of epithelial cells' integrity against C. albicans-induced cell death. Our findings extend the knowledge on emerging roles of the autophagic machinery in stress-related membrane dynamics.


Subject(s)
Autophagy , Candida albicans , Candida albicans/physiology , Host-Pathogen Interactions , Hyphae , Epithelial Cells , Cell Membrane
8.
Gut Microbes ; 14(1): 2004798, 2022.
Article in English | MEDLINE | ID: mdl-35086419

ABSTRACT

Candida albicans (C. albicans) is an opportunistic pathogen causing infections ranging from superficial to life-threatening disseminated infections. In a susceptible host, C. albicans is able to translocate through the gut barrier, promoting its dissemination into deeper organs. C. albicans hyphae can invade human epithelial cells by two well-documented mechanisms: epithelial-driven endocytosis and C. albicans-driven active penetration. One mechanism by which host cells protect themselves against intracellular C. albicans is termed autophagy. The protective role of autophagy during C. albicans infection has been investigated in myeloid cells; however, far less is known regarding the role of this process during the infection of epithelial cells. In the present study, we investigated the role of autophagy-related proteins during the infection of epithelial cells, including intestinal epithelial cells and gut explants, by C. albicans. Using cell imaging, we show that key molecular players of the autophagy machinery (LC3-II, PI3P, ATG16L1, and WIPI2) were recruited at Candida invasion sites. We deepened these observations by electron microscopy analyses that reveal the presence of autophagosomes in the vicinity of invading hyphae. Importantly, these events occur during active penetration of C. albicans into host cells and are associated with plasma membrane damage. In this context, we show that the autophagy-related key proteins ATG5 and ATG16L1 contribute to plasma membrane repair mediated by lysosomal exocytosis and participate in protecting epithelial cells against C. albicans-induced cell death. Our findings provide a novel mechanism by which epithelial cells, forming the first line of defense against C. albicans in the gut, can react to limit C. albicans invasion.


Subject(s)
Autophagy , Candida albicans/physiology , Candidiasis/microbiology , Cell Membrane/microbiology , Epithelial Cells/microbiology , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Candida albicans/genetics , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/physiopathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism
9.
Autophagy Rep ; 1(1): 414-417, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-38106995

ABSTRACT

This animated movie presents the mechanism of macroautophagy, hereafter autophagy, by showing the molecular features of the formation of autophagosomes, the hallmark organelle of this intracellular catabolic pathway. It is based on our current knowledge and it also illustrates how autophagosomes can recognize and eliminate selected cargoes.

11.
Biochem Soc Trans ; 49(6): 2831-2839, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34747995

ABSTRACT

Mechanical forces, such as compression, shear stress and stretching, play major roles during development, tissue homeostasis and immune processes. These forces are translated into a wide panel of biological responses, ranging from changes in cell morphology, membrane transport, metabolism, energy production and gene expression. Recent studies demonstrate the role of autophagy in the integration of these physical constraints. Here we focus on the role of autophagy in the integration of shear stress induced by blood and urine flows in the circulatory system and the kidney, respectively. Many studies highlight the involvement of the primary cilium, a microtubule-based antenna present at the surface of many cell types, in the integration of extracellular stimuli. The cross-talk between the molecular machinery of autophagy and that of the primary cilium in the context of shear stress is revealed to be an important dialog in cell biology.


Subject(s)
Autophagy/physiology , Cilia/physiology , Stress, Mechanical
12.
Methods Cell Biol ; 164: 11-25, 2021.
Article in English | MEDLINE | ID: mdl-34225909

ABSTRACT

Mechanical stress has been shown to induce the degradation of lipid droplets in kidney epithelial cells. Here, we illustrate the technical equipment and devices that are currently used in our laboratory to apply shear stress on cells. We provide a detailed protocol to monitor lipophagy in response to shear stress. The aim of this review is to guide and help people understand the challenges in studying acidic lipolysis in cells subjected to fluid flow.


Subject(s)
Autophagy , Lipid Metabolism , Epithelial Cells , Humans , Kidney , Lipid Droplets/metabolism , Stress, Mechanical
13.
Autophagy ; 17(7): 1791-1793, 2021 07.
Article in English | MEDLINE | ID: mdl-34057021

ABSTRACT

The primary cilium (PC), a plasma membrane microtubule-based structure, is a sensor of extracellular chemical and mechanical stress stimuli. Upon ciliogenesis, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. We demonstrated in a recent study that IFT20 and ATG16L1 interact in a multiprotein complex. This interaction is mediated by the ATG16L1 WD40 domain and an ATG16L1-binding motif newly identified in IFT20. ATG16L1-deficient cells are decorated by giant ciliary structures hallmarked by defects in PC-associated signaling. These structures uncommonly accumulate phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2) while phosphatidylinositol-4-phosphate (PtdIns4P), a lipid normally concentrated in the PC, is excluded. We show that INPP5E, a phosphoinositide-associated phosphatase responsible for PtdIns4P generation, is a partner of ATG16L1 in this context. Perturbation of the ATG16L1-IFT20 complex alters INPP5E trafficking and proper function at the ciliary membrane. Altogether, these results reveal a novel autophagy-independent function of ATG16L1 that contributes to proper PC dynamics and function.


Subject(s)
Autophagy , Phosphoric Monoester Hydrolases , Cilia , Proteins
15.
Cell Rep ; 35(4): 109045, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33910006

ABSTRACT

The primary cilium (PC) regulates signalization linked to external stress sensing. Previous works established a functional interplay between the PC and the autophagic machinery. When ciliogenesis is promoted by serum deprivation, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. Here, we demonstrate that IFT20 and ATG16L1 are part of the same complex requiring the WD40 domain of ATG16L1 and a Y-E-F-I motif in IFT20. We show that ATG16L1-deficient cells exhibit aberrant ciliary structures, which accumulate PI4,5P2, whereas PI4P, a lipid normally concentrated in the PC, is absent. Finally, we demonstrate that INPP5E, a phosphoinositide-associated phosphatase responsible for PI4P generation, interacts with ATG16L1 and that a perturbation of the ATG16L1/IFT20 complex alters its trafficking to the PC. Altogether, our results reveal a function of ATG16L1 in ciliary lipid and protein trafficking, thus directly contributing to proper PC dynamics and functions.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/physiology , Carrier Proteins/metabolism , Cilia/metabolism , Phosphatidylinositols/metabolism , Humans
16.
Cell Death Differ ; 28(9): 2651-2672, 2021 09.
Article in English | MEDLINE | ID: mdl-33795848

ABSTRACT

Despite the great advances in autophagy research in the last years, the specific functions of the four mammalian Atg4 proteases (ATG4A-D) remain unclear. In yeast, Atg4 mediates both Atg8 proteolytic activation, and its delipidation. However, it is not clear how these two roles are distributed along the members of the ATG4 family of proteases. We show that these two functions are preferentially carried out by distinct ATG4 proteases, being ATG4D the main delipidating enzyme. In mammalian cells, ATG4D loss results in accumulation of membrane-bound forms of mATG8s, increased cellular autophagosome number and reduced autophagosome average size. In mice, ATG4D loss leads to cerebellar neurodegeneration and impaired motor coordination caused by alterations in trafficking/clustering of GABAA receptors. We also show that human gene variants of ATG4D associated with neurodegeneration are not able to fully restore ATG4D deficiency, highlighting the neuroprotective role of ATG4D in mammals.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/metabolism , Neurodegenerative Diseases/genetics , Amino Acid Sequence , Animals , Autophagy , Disease Models, Animal , Humans , Mammals , Mice , Mice, Transgenic , Neurodegenerative Diseases/pathology
18.
PLoS Pathog ; 17(2): e1009340, 2021 02.
Article in English | MEDLINE | ID: mdl-33596274

ABSTRACT

Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.


Subject(s)
Antiviral Agents/administration & dosage , Endoplasmic Reticulum/pathology , Host-Pathogen Interactions , Influenza A virus/drug effects , Influenza, Human/drug therapy , Mitochondria/drug effects , Pharmaceutical Preparations/administration & dosage , Endoplasmic Reticulum/virology , Humans , Immunity, Innate , Influenza, Human/pathology , Influenza, Human/virology , Mitochondria/pathology , Mitochondria/virology , Virus Replication
19.
Article in English | MEDLINE | ID: mdl-33578048

ABSTRACT

Phosphoinositides are key lipids in eukaryotes, regulating organelles' identity and function. Their synthesis and turnover require specific phosphorylation/dephosphorylation events that are ensured by dedicated lipid kinases and phosphatases, which modulate the structure of the inositol ring by adding or removing phosphates on positions 3, 4 or 5. Beside their implication in intracellular signalization and cytoskeleton dynamics, phosphoinositides are essential for vesicular transport along intracellular trafficking routes, by providing molecular scaffolds to membrane related events such as budding, fission or fusion. Robust and detailed literature demonstrated that some members of the phosphoinositides family are crucial for the autophagy pathway, acting as fine tuners and regulators. In this review, we discuss the known functions of phosphoinositides in autophagy canonical processes, such as during autophagosome formation, as well as the importance of phosphoinositides in organelle-based processes directly connected to the autophagic machinery, such as endosomal dynamics, ciliogenesis and innate immunity.


Subject(s)
Autophagy , Phosphatidylinositols/metabolism , Stress, Physiological , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...