Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2725: 121-129, 2024.
Article in English | MEDLINE | ID: mdl-37856021

ABSTRACT

Volume electron microscopy technologies such as serial block face scanning electron microscopy (SBF-SEM) allow the characterization of tissue organization and cellular content in three dimensions at nanoscale resolution. Here, we describe the procedure to process and image an air-liquid interface culture of human or mouse airway epithelial cells for visualization of the multiciliated epithelium by SBF-SEM in vertical or horizontal cross section.


Subject(s)
Imaging, Three-Dimensional , Volume Electron Microscopy , Animals , Humans , Mice , Imaging, Three-Dimensional/methods , Microscopy, Electron, Scanning , Epithelium , Epithelial Cells
2.
Biol Direct ; 18(1): 43, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528429

ABSTRACT

Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.


Subject(s)
Antipsychotic Agents , Depressive Disorder, Major , Animals , Mice , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Drosophila melanogaster , Electron Transport
3.
Mol Biol Cell ; 34(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37039596

ABSTRACT

Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.


Subject(s)
Actins , Singing , Actins/metabolism , Anniversaries and Special Events , Cell Membrane/metabolism , Cholesterol/metabolism
4.
Cell Stem Cell ; 28(6): 1023-1039.e13, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33831365

ABSTRACT

Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Cell Differentiation , Female , Humans , Placenta , Pregnancy
5.
Nat Commun ; 12(1): 819, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547302

ABSTRACT

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Fas-Associated Death Domain Protein/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Catalytic Domain , Cloning, Molecular , Cryoelectron Microscopy , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regulated Cell Death/genetics , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Proc Natl Acad Sci U S A ; 117(27): 15694-15701, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571922

ABSTRACT

The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73ß. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73ß results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development.


Subject(s)
Alternative Splicing/genetics , Embryonic Development/genetics , Hippocampus/growth & development , Tumor Protein p73/genetics , Animals , Apoptosis/genetics , Hippocampus/metabolism , Humans , Interstitial Cells of Cajal/metabolism , Learning/physiology , Memory/physiology , Mice , Neurons/metabolism , Promoter Regions, Genetic
7.
Cell Cycle ; 19(14): 1833-1845, 2020 07.
Article in English | MEDLINE | ID: mdl-32584647

ABSTRACT

The p53 family transcriptional factor p73 plays a pivotal role in development. Ablation of p73 results in severe neurodevelopmental defects, chronic infections, inflammation and infertility. In addition to this, Trp73-\- mice display severe alteration in the ciliated epithelial lining and the full-length N-terminal isoform TAp73 has been implicated in the control of multiciliogenesis transcriptional program. With our recently generated Trp73Δ13/Δ13 mouse model, we interrogate the physiological role of p73 C-terminal isoforms in vivo. Trp73Δ13/Δ13 mice lack exon 13 in Trp73 gene, producing an ectopic switch from the C-terminal isoforms p73α to p73ß. Trp73Δ13/Δ13 mice show a pattern of expression of TAp73 comparable to the wild-type littermates, indicating that the α to ß switch does not significantly alter the expression of the gene in this cell type. Moreover, Trp73Δ13/Δ13 do not display any significant alteration in the airway ciliated epithelium, suggesting that in this context p73ß can fully substitute the function of the longer isoform p73α. Similarly, Trp73Δ13/Δ13 ciliated epithelium of the brain ependyma also does appear defective. In this district however expression of TAp73 is not detectable, indicating that expression of the gene might be compensated by alternative mechanisms. Overall our work indicates that C-terminus p73 is dispensable for the multiciliogenesis program and suggests a possible tissue-specific effect of p73 alternative splicing.


Subject(s)
Cilia/metabolism , Organogenesis , Tumor Protein p73/chemistry , Tumor Protein p73/metabolism , Animals , Cell Line , Ependyma/metabolism , Epithelium/metabolism , Epithelium/ultrastructure , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Structure-Activity Relationship , Trachea/metabolism
8.
Microscopy (Oxf) ; 69(6): 350-359, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-32447402

ABSTRACT

Unroofing, which is the mechanical shearing of a cell to expose the cytoplasmic surface of the cell membrane, is a unique preparation method that allows membrane cytoskeletons to be observed by cryo-electron microscopy, atomic force microscopy, freeze-etching electron microscopy and other methods. Ultrasound and adhesion have been known to mechanically unroof cells. In this study, unroofing using these two means was denoted sonication unroofing and adhesion unroofing, respectively. We clarified the mechanisms by which cell membranes are removed in these unroofing procedures and established efficient protocols for each based on the mechanisms. In sonication unroofing, fine bubbles generated by sonication adhered electrostatically to apical cell surfaces and then removed the apical (dorsal) cell membrane with the assistance of buoyancy and water flow. The cytoplasmic surface of the ventral cell membrane remaining on the grids became observable by this method. In adhesion unroofing, grids charged positively by coating with Alcian blue were pressed onto the cells, thereby tightly adsorbing the dorsal cell membrane. Subsequently, a part of the cell membrane strongly adhered to the grids was peeled from the cells and transferred onto the grids when the grids were lifted. This method thus allowed the visualization of the cytoplasmic surface of the dorsal cell membrane. This paper describes robust, improved protocols for the two unroofing methods in detail. In addition, micro-unroofing (perforation) likely due to nanobubbles is introduced as a new method to make cells transparent to electron beams.


Subject(s)
Cell Membrane/ultrastructure , Cryoelectron Microscopy/methods , Cytoskeleton/ultrastructure , Histocytological Preparation Techniques , Microscopy, Atomic Force/methods , Microscopy, Electron/methods , Freeze Etching , Sonication
9.
Cell Rep ; 30(8): 2699-2711.e8, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101746

ABSTRACT

The transcriptional corepressor complex CoREST is one of seven histone deacetylase complexes that regulate the genome through controlling chromatin acetylation. The CoREST complex is unique in containing both histone demethylase and deacetylase enzymes, LSD1 and HDAC1, held together by the RCOR1 scaffold protein. To date, it has been assumed that the enzymes function independently within the complex. Now, we report the assembly of the ternary complex. Using both structural and functional studies, we show that the activity of the two enzymes is closely coupled and that the complex can exist in at least two distinct states with different kinetics. Electron microscopy of the complex reveals a bi-lobed structure with LSD1 and HDAC1 enzymes at opposite ends of the complex. The structure of CoREST in complex with a nucleosome reveals a mode of chromatin engagement that contrasts with previous models.


Subject(s)
Co-Repressor Proteins/metabolism , Histone Deacetylase 1/metabolism , Histone Demethylases/metabolism , Nerve Tissue Proteins/metabolism , Acetylation , Amino Acid Sequence , Animals , Cryoelectron Microscopy , Demethylation , HEK293 Cells , Humans , Kinetics , Models, Molecular , Nucleosomes/metabolism , Xenopus
10.
Biochim Biophys Acta Biomembr ; 1861(10): 183008, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31207206

ABSTRACT

Membrane fusion under mildly acidic pH occurs naturally during viral infection in cells and has been exploited in the field of nanoparticle-mediated drug delivery to circumvent endosomal entrapment of the cargo. Herein, we aimed to confer virus-like fusogenic activity to HDL in the form of a ca. 10-nm disc comprising a discoidal lipid bilayer and two copies of a lipid-binding protein at the edge. A series of HDL mutants were prepared with a mixture of three lipids and a cell-penetrating peptide (TAT, penetratin, or Arg8) fused to the protein. In a lipid-mixing assay with anionic liposomes at pH 5.5, one HDL mutant showed the fusogenic activity higher than known fusogenic liposomes. In live mammalian cells, this HDL mutant showed high plasma membrane-binding activity in the presence of serum independent of pH. In the absence of serum, a mildly acidic pH dependency for binding to the plasma membrane and the subsequent lipid mixing between them was observed for this mutant. We propose a novel strategy to develop HDL-based drug carriers by taking advantage of the HDL lipid/protein composite structure.


Subject(s)
Lipoproteins, HDL/chemistry , Membrane Fusion/physiology , Nanoparticles/chemistry , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell-Penetrating Peptides , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/metabolism , Lipids , Lipoproteins, HDL/metabolism , Liposomes/metabolism , Membrane Fusion/drug effects , Membranes/metabolism , Peptide Fragments/chemistry
11.
PLoS Biol ; 16(4): e2003611, 2018 04.
Article in English | MEDLINE | ID: mdl-29630591

ABSTRACT

Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nerve Tissue Proteins/metabolism , Neurotransmitter Agents/metabolism , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Adaptor Proteins, Vesicular Transport/genetics , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Brain/metabolism , Cyclic GMP/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Larva/genetics , Larva/metabolism , Nerve Tissue Proteins/genetics , Neuromuscular Junction/cytology , Neuromuscular Junction/metabolism , Phenotype , Prenylation , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism
12.
Biochem Soc Trans ; 46(2): 379-389, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29540508

ABSTRACT

Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.


Subject(s)
Membrane Lipids/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Nerve Tissue Proteins/chemistry , Polymerization , Protein Domains
13.
Stem Cell Reports ; 9(5): 1546-1559, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29107590

ABSTRACT

High-purity cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are promising for drug development and myocardial regeneration. However, most hiPSC-derived CMs morphologically and functionally resemble immature rather than adult CMs, which could hamper their application. Here, we obtained high-quality cardiac tissue-like constructs (CTLCs) by cultivating hiPSC-CMs on low-thickness aligned nanofibers made of biodegradable poly(D,L-lactic-co-glycolic acid) polymer. We show that multilayered and elongated CMs could be organized at high density along aligned nanofibers in a simple one-step seeding process, resulting in upregulated cardiac biomarkers and enhanced cardiac functions. When used for drug assessment, CTLCs were much more robust than the 2D conventional control. We also demonstrated the potential of CTLCs for modeling engraftments in vitro and treating myocardial infarction in vivo. Thus, we established a handy framework for cardiac tissue engineering, which holds high potential for pharmaceutical and clinical applications.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Stem Cell Transplantation/methods , Tissue Engineering/methods , Animals , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/transplantation , Male , Myocytes, Cardiac/transplantation , Nanofibers/chemistry , Polyglactin 910/chemistry , Rats , Rats, Nude , Tissue Scaffolds/chemistry
14.
Sci Rep ; 7(1): 7794, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798329

ABSTRACT

Caveolae are abundant flask-shaped invaginations of plasma membranes that buffer membrane tension through their deformation. Few quantitative studies on the deformation of caveolae have been reported. Each caveola contains approximately 150 caveolin-1 proteins. In this study, we estimated the extent of caveolar deformation by measuring the density of caveolin-1 projected onto a two-dimensional (2D) plane. The caveolin-1 in a flattened caveola is assumed to have approximately one-quarter of the density of the caveolin-1 in a flask-shaped caveola. The proportion of one-quarter-density caveolin-1 increased after increasing the tension of the plasma membrane through hypo-osmotic treatment. The one-quarter-density caveolin-1 was soluble in detergent and formed a continuous population with the caveolin-1 in the caveolae of cells under isotonic culture. The distinct, dispersed lower-density caveolin-1 was soluble in detergent and increased after the application of tension, suggesting that the hypo-osmotic tension induced the dispersion of caveolin-1 from the caveolae, possibly through flattened caveolar intermediates.


Subject(s)
Caveolin 1/metabolism , Cell Membrane/metabolism , Osmotic Pressure , Caveolae/metabolism , Caveolae/ultrastructure , Cell Membrane/ultrastructure , HeLa Cells , Humans
15.
Cell Metab ; 25(5): 1103-1117.e6, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28467928

ABSTRACT

Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced with Oct4, Sox2, and Klf4 (OSK) into murine fibroblasts, Zic3 and Esrrb synergistically enhance the reprogramming efficiency by regulating cellular metabolic pathways. These two transcription factors (TFs) cooperatively activate glycolytic metabolism independently of hypoxia inducible factors (HIFs). In contrast, the regulatory modes of the TFs on OXPHOS are antagonistic: Zic3 represses OXPHOS, whereas Esrrb activates it. Therefore, when introduced with Zic3, Esrrb restores OXPHOS activity, which is essential for efficient reprogramming. In addition, Esrrb-mediated OXPHOS activation is critical for the conversion of primed PSCs into the naive state. Our study suggests that the combinatorial function of TFs achieves an appropriate balance of metabolic pathways to induce naive PSCs.


Subject(s)
Cellular Reprogramming , Glycolysis , Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/cytology , Oxidative Phosphorylation , Receptors, Estrogen/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Homeodomain Proteins/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice, Inbred C57BL , Mice, Inbred ICR , Receptors, Estrogen/genetics , Transcription Factors/genetics , Up-Regulation
16.
J Control Release ; 228: 132-140, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26959846

ABSTRACT

Intracellular drug delivery by nanoparticles is often hampered by their endosomal entrapment followed by their degradation in the lysosomal compartment and/or exocytosis. Here, we show that internalization and endosomal escape of cargoes in a cationized natural nanocarrier, high-density lipoprotein (HDL), can be controlled in a pH-dependent manner through stable complexation with a membranolytic anionic block polymer. A genetically and chemically cationized form of HDL (catHDL) is prepared for the first time by both genetic fusion with YGRKKRRQRRR peptide and incorporation of 1,2-dioleoyloxy-3-(trimethylammonium)propane. Upon addition of poly(ethylene glycol)-block-poly(propyl methacrylate-co-methacrylic acid) (PA), catHDL yields inhibition of internalization at neutral pH and its subsequent recovery at mildly acidic pH. catHDL forms a stable discoidal-shape complex with PA (catHDL/PA) (ca. 50 nm in diameter), even in the presence of serum. Significant enhancement of endosomal escape of a catHDL component is observed after a 1-h treatment of human cancer cells with catHDL/PA. Doxorubicin and curcumin, fluorescent anti-cancer drugs, encapsulated into catHDL/PA are also translocated outside of endosomes, compared with that into catHDL, and their cytotoxicities are enhanced inside the cells. These data suggest that catHDL/PA may have a potential benefit to improve the cellular delivery and endosomal escape of therapeutics under mildly acidic conditions such as in tumor tissues.


Subject(s)
Antineoplastic Agents/administration & dosage , Delayed-Action Preparations/chemistry , Fatty Acids, Monounsaturated/chemistry , Lipoproteins, HDL/chemistry , Polymethacrylic Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Amino Acid Sequence , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Curcumin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Neoplasms/metabolism , Polyethylene Glycols/chemistry , Recombinant Fusion Proteins/chemistry
17.
Mol Biol Cell ; 27(7): 1101-19, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26864625

ABSTRACT

The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.


Subject(s)
Actin Cytoskeleton , Cell Membrane/metabolism , Phospholipids/chemistry , Receptors, Transferrin/chemistry , Animals , Cell Line , Diffusion , Humans , Models, Biological , Potoroidae , Rats
18.
Biochem Biophys Res Commun ; 469(3): 587-92, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26687948

ABSTRACT

Cellular disease models are useful tools for Alzheimer's disease (AD) research. Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), are promising materials for creating cellular models of such diseases. In the present study, we established cellular models of AD in hESCs that overexpressed the mutant Presenilin 1 (PS1) gene with the use of a site-specific gene integration system. The overexpression of PS1 did not affect the undifferentiated status or the neural differentiation ability of the hESCs. We found increases in the ratios of amyloid-ß 42 (Aß42)/Aß40 and Aß43/Aß40. Furthermore, synaptic dysfunction was observed in a cellular model of AD that overexpressed mutant PS1. These results suggest that the AD phenotypes, in particular, the electrophysiological abnormality of the synapses in our AD models might be useful for AD research and drug discovery.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Neurons/pathology , Presenilin-1/metabolism , Animals , Cell Differentiation , Disease Models, Animal , Human Embryonic Stem Cells/pathology , Humans , Mutation , Presenilin-1/genetics , Up-Regulation
19.
Angew Chem Int Ed Engl ; 54(40): 11725-9, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26249533

ABSTRACT

Controlling cell functions using external photoresponsive nanomaterials has enormous potential for the development of cell-engineering technologies and intractable disease therapies, but the former currently requires genetic modification of the target cells. We present a method using plasma-membrane-targeted gold nanorods (pm-AuNRs) prepared with a cationic protein/lipid complex to activate a thermosensitive cation channel, TRPV1, in intact neuronal cells. Highly localized photothermal heat generation mediated by the pm-AuNRs induced Ca(2+) influx solely by TRPV1 activation. In contrast, the use of previously reported cationic AuNRs that are coated with a conventional synthetic polymer also led to photoinduced Ca(2+) influx, but this influx resulted from membrane damage. Our method provides an optogenetic platform without the need for prior genetic engineering of the target cells and might be useful for novel TRPV1-targeted phototherapeutic approaches.


Subject(s)
Cell Engineering , Cell Membrane/metabolism , Nanotubes/chemistry , Neurons/metabolism , TRPV Cation Channels/metabolism , Temperature , Calcium/chemistry , Calcium/metabolism , Cell Membrane/chemistry , Gold/chemistry , Gold/metabolism , HEK293 Cells , Humans , Neurons/cytology , Single-Cell Analysis , Surface Properties , TRPV Cation Channels/chemistry
20.
J Am Chem Soc ; 136(42): 14966-73, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25254320

ABSTRACT

Porous coordination polymers (PCPs) are an intriguing class of molecular-based materials because of the designability of framework scaffolds, pore sizes and pore surface functionalities. Besides the structural designability at the molecular scale, the structuring of PCPs into mesoscopic/macroscopic morphologies has attracted much attention due to the significance for the practical applications. The structuring of PCPs at the mesoscopic/macroscopic scale has been so far demonstrated by the spatial localization of coordination reactions on the surface of templates or at the phase boundaries. However, these methodologies have never been applied to the fabrication of solid-solution or multivariate metal-organic frameworks (MOFs), in which multiple components are homogeneously mixed. Herein, we demonstrate the structuring of a box-type superstructure comprising of a solid-solution PCP by integrating a bidirectional diffusion of multiple organic ligands into molecular assembly. The parent crystals of [Zn2(ndc)2(bpy)]n were placed in the DMF solution of additional organic component of H2bdc, and the temperature was rapidly elevated up to 80 °C (ndc = 1,4-naphthalenedicarboxylate, bpy = 4,4'-bipyridyl, bdc = 1,4-benzenedicarboxylate). The dissolution of the parent crystals induced the outward diffusion of components; contrariwise, the accumulation of the other organic ligand of H2bdc induced the inward diffusion toward the surface of the parent crystals. This bidirectional diffusion of multiple components spatially localized the recrystallization at the surface of cuboid parent crystals; therefore, the nanocrystals of a solid-solution PCP ([Zn2(bdc)1.5(ndc)0.5(bpy)]n) were organized into a mesoscopic box superstructure. Furthermore, we demonstrated that the box superstructures enhanced the mass transfer kinetics for the separation of hydrocarbons.

SELECTION OF CITATIONS
SEARCH DETAIL
...