Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Stat Med ; 43(19): 3613-3632, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38880949

ABSTRACT

There is growing interest in platform trials that allow for adding of new treatment arms as the trial progresses as well as being able to stop treatments part way through the trial for either lack of benefit/futility or for superiority. In some situations, platform trials need to guarantee that error rates are controlled. This paper presents a multi-stage design, that allows additional arms to be added in a platform trial in a preplanned fashion, while still controlling the family-wise error rate, under the assumption of known number and timing of treatments to be added, and no time trends. A method is given to compute the sample size required to achieve a desired level of power and we show how the distribution of the sample size and the expected sample size can be found. We focus on power under the least favorable configuration which is the power of finding the treatment with a clinically relevant effect out of a set of treatments while the rest have an uninteresting treatment effect. A motivating trial is presented which focuses on two settings, with the first being a set number of stages per active treatment arm and the second being a set total number of stages, with treatments that are added later getting fewer stages. Compared to Bonferroni, the savings in the total maximum sample size are modest in a trial with three arms, <1% of the total sample size. However, the savings are more substantial in trials with more arms.


Subject(s)
Research Design , Humans , Sample Size , Computer Simulation , Models, Statistical , Clinical Trials as Topic/methods , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/statistics & numerical data
2.
Stat Methods Med Res ; 33(2): 203-226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263903

ABSTRACT

It is increasingly common for therapies in oncology to be given in combination. In some cases, patients can benefit from the interaction between two drugs, although often at the risk of higher toxicity. A large number of designs to conduct phase I trials in this setting are available, where the objective is to select the maximum tolerated dose combination. Recently, a number of model-free (also called model-assisted) designs have provoked interest, providing several practical advantages over the more conventional approaches of rule-based or model-based designs. In this paper, we demonstrate a novel calibration procedure for model-free designs to determine their most desirable parameters. Under the calibration procedure, we compare the behaviour of model-free designs to model-based designs in a comprehensive simulation study, covering a number of clinically plausible scenarios. It is found that model-free designs are competitive with the model-based designs in terms of the proportion of correct selections of the maximum tolerated dose combination. However, there are a number of scenarios in which model-free designs offer a safer alternative. This is also illustrated in the application of the designs to a case study using data from a phase I oncology trial.


Subject(s)
Neoplasms , Research Design , Humans , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Medical Oncology , Neoplasms/drug therapy , Clinical Trials, Phase I as Topic
3.
Biom J ; 65(8): e2200301, 2023 12.
Article in English | MEDLINE | ID: mdl-37816142

ABSTRACT

Theoretical-information approach applied to the clinical trial designs appeared to bring several advantages when tackling a problem of finding a balance between power and expected number of successes (ENS). In particular, it was shown that the built-in parameter of the weight function allows finding the desired trade-off between the statistical power and number of treated patients in the context of small population Phase II clinical trials. However, in real clinical trials, randomized designs are more preferable. The goal of this research is to introduce randomization to a deterministic entropy-based sequential trial procedure generalized to multiarm setting. Several methods of randomization applied to an entropy-based design are investigated in terms of statistical power and ENS. Namely, the four design types are considered: (a) deterministic procedures, (b) naive randomization using the inverse of entropy criteria as weights, (c) block randomization, and (d) randomized penalty parameter. The randomized entropy-based designs are compared to randomized Gittins index (GI) and fixed randomization (FR). After the comprehensive simulation study, the following conclusion on block randomization is made: for both entropy-based and GI-based block randomization designs the degree of randomization induced by forward-looking procedures is insufficient to achieve a decent statistical power. Therefore, we propose an adjustment for the forward-looking procedure that improves power with almost no cost in terms of ENS. In addition, the properties of randomization procedures based on randomly drawn penalty parameter are also thoroughly investigated.


Subject(s)
Research Design , Humans , Random Allocation , Computer Simulation , Sample Size
4.
Stat Med ; 42(24): 4392-4417, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37614070

ABSTRACT

Recent innovation in trial design to improve study efficiency has led to the development of basket trials in which a single therapeutic treatment is tested on several patient populations, each of which forms a basket. In a common setting, patients across all baskets share a genetic marker and as such, an assumption can be made that all patients may have a homogeneous response to treatments. Bayesian information borrowing procedures utilize this assumption to draw on information regarding the response in one basket when estimating the response rate in others. This can improve power and precision of estimates particularly in the presence of small sample sizes, however, can come at a cost of biased estimates and an inflation of error rates, bringing into question validity of trial conclusions. We review and compare the performance of several Bayesian borrowing methods, namely: the Bayesian hierarchical model (BHM), calibrated Bayesian hierarchical model (CBHM), exchangeability-nonexchangeability (EXNEX) model and a Bayesian model averaging procedure. A generalization of the CBHM is made to account for unequal sample sizes across baskets. We also propose a modification of the EXNEX model that allows for better control of a type I error. The proposed method uses a data-driven approach to account for the homogeneity of the response data, measured through Hellinger distances. Through an extensive simulation study motivated by a real basket trial, for both equal and unequal sample sizes across baskets, we show that in the presence of a basket with a heterogeneous response, unlike the other methods discussed, this model can control type I error rates to a nominal level whilst yielding improved power.


Subject(s)
Research Design , Humans , Bayes Theorem , Computer Simulation , Sample Size
5.
Pharm Stat ; 22(5): 938-962, 2023.
Article in English | MEDLINE | ID: mdl-37415394

ABSTRACT

Tuberculosis (TB) is one of the biggest killers among infectious diseases worldwide. Together with the identification of drugs that can provide benefits to patients, the challenge in TB is also the optimisation of the duration of these treatments. While conventional duration of treatment in TB is 6 months, there is evidence that shorter durations might be as effective but could be associated with fewer side effects and may be associated with better adherence. Based on a recent proposal of an adaptive order-restricted superiority design that employs the ordering assumptions within various duration of the same drug, we propose a non-inferiority (typically used in TB trials) adaptive design that effectively uses the order assumption. Together with the general construction of the hypothesis testing and expression for type I and type II errors, we focus on how the novel design was proposed for a TB trial concept. We consider a number of practical aspects such as choice of the design parameters, randomisation ratios, and timings of the interim analyses, and how these were discussed with the clinical team.


Subject(s)
Duration of Therapy , Tuberculosis , Humans , Research Design , Tuberculosis/drug therapy , Equivalence Trials as Topic
6.
Eur J Cancer ; 189: 112916, 2023 08.
Article in English | MEDLINE | ID: mdl-37301716

ABSTRACT

BACKGROUND: The pharmaceutical industry's productivity has been declining over the last two decades and high attrition rates and reduced regulatory approvals are being seen. The development of oncology drugs is particularly challenging with low rates of approval for novel treatments when compared with other therapeutic areas. Reliably establishing the potential of novel treatment and the corresponding optimal dosage is a key component to ensure efficient overall development. A growing interest lies in terminating developments of poor treatments quickly while enabling accelerated development for highly promising interventions. METHODS: One approach to reliably establish the optimal dosage and the potential of a novel treatment and thereby improve efficiency in the drug development pathway is the use of novel statistical designs that make efficient use of the data collected. RESULTS: In this paper, we discuss different (seamless) strategies for early oncology development and illustrate their strengths and weaknesses through real trial examples. We provide some directions for good practices in early oncology development, discuss frequently seen missed opportunities for improved efficiency and some future opportunities that have yet to fully develop their potential in early oncology treatment development. DISCUSSION: Modern methods for dose-finding have the potential to shorten and improve dose-finding and only small changes to current approaches are required to realise this potential.


Subject(s)
Medical Oncology , Neoplasms , Humans , Drug Development , Research Design , Neoplasms/drug therapy
7.
Stat Med ; 42(16): 2841-2854, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37158302

ABSTRACT

Multi-Arm Multi-Stage (MAMS) designs can notably improve efficiency in later stages of drug development, but they can be suboptimal when an order in the effects of the arms can be assumed. In this work, we propose a Bayesian multi-arm multi-stage trial design that selects all promising treatments with high probability and can efficiently incorporate information about the order in the treatment effects as well as incorporate prior knowledge on the treatments. A distinguishing feature of the proposed design is that it allows taking into account the uncertainty of the treatment effect order assumption and does not assume any parametric arm-response model. The design can provide control of the family-wise error rate under specific values of the control mean and we illustrate its operating characteristics in a study of symptomatic asthma. Via simulations, we compare the novel Bayesian design with frequentist multi-arm multi-stage designs and a frequentist order restricted design that does not account for the order uncertainty and demonstrate the gains in the sample sizes the proposed design can provide. We also find that the proposed design is robust to violations of the assumptions on the order.


Subject(s)
Research Design , Humans , Bayes Theorem , Clinical Trials as Topic , Sample Size
8.
Lancet Infect Dis ; 23(2): 183-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36272432

ABSTRACT

BACKGROUND: The antiviral drug molnupiravir was licensed for treating at-risk patients with COVID-19 on the basis of data from unvaccinated adults. We aimed to evaluate the safety and virological efficacy of molnupiravir in vaccinated and unvaccinated individuals with COVID-19. METHODS: This randomised, placebo-controlled, double-blind, phase 2 trial (AGILE CST-2) was done at five National Institute for Health and Care Research sites in the UK. Eligible participants were adult (aged ≥18 years) outpatients with PCR-confirmed, mild-to-moderate SARS-CoV-2 infection who were within 5 days of symptom onset. Using permuted blocks (block size 2 or 4) and stratifying by site, participants were randomly assigned (1:1) to receive either molnupiravir (orally; 800 mg twice daily for 5 days) plus standard of care or matching placebo plus standard of care. The primary outcome was the time from randomisation to SARS-CoV-2 PCR negativity on nasopharyngeal swabs and was analysed by use of a Bayesian Cox proportional hazards model for estimating the probability of a superior virological response (hazard ratio [HR]>1) for molnupiravir versus placebo. Our primary model used a two-point prior based on equal prior probabilities (50%) that the HR was 1·0 or 1·5. We defined a priori that if the probability of a HR of more than 1 was more than 80% molnupiravir would be recommended for further testing. The primary outcome was analysed in the intention-to-treat population and safety was analysed in the safety population, comprising participants who had received at least one dose of allocated treatment. This trial is registered in ClinicalTrials.gov, NCT04746183, and the ISRCTN registry, ISRCTN27106947, and is ongoing. FINDINGS: Between Nov 18, 2020, and March 16, 2022, 1723 patients were assessed for eligibility, of whom 180 were randomly assigned to receive either molnupiravir (n=90) or placebo (n=90) and were included in the intention-to-treat analysis. 103 (57%) of 180 participants were female and 77 (43%) were male and 90 (50%) participants had received at least one dose of a COVID-19 vaccine. SARS-CoV-2 infections with the delta (B.1.617.2; 72 [40%] of 180), alpha (B.1.1.7; 37 [21%]), omicron (B.1.1.529; 38 [21%]), and EU1 (B.1.177; 28 [16%]) variants were represented. All 180 participants received at least one dose of treatment and four participants discontinued the study (one in the molnupiravir group and three in the placebo group). Participants in the molnupiravir group had a faster median time from randomisation to negative PCR (8 days [95% CI 8-9]) than participants in the placebo group (11 days [10-11]; HR 1·30, 95% credible interval 0·92-1·71; log-rank p=0·074). The probability of molnupiravir being superior to placebo (HR>1) was 75·4%, which was less than our threshold of 80%. 73 (81%) of 90 participants in the molnupiravir group and 68 (76%) of 90 participants in the placebo group had at least one adverse event by day 29. One participant in the molnupiravir group and three participants in the placebo group had an adverse event of a Common Terminology Criteria for Adverse Events grade 3 or higher severity. No participants died (due to any cause) during the trial. INTERPRETATION: We found molnupiravir to be well tolerated and, although our predefined threshold was not reached, we observed some evidence that molnupiravir has antiviral activity in vaccinated and unvaccinated individuals infected with a broad range of SARS-CoV-2 variants, although this evidence is not conclusive. FUNDING: Ridgeback Biotherapeutics, the UK National Institute for Health and Care Research, the Medical Research Council, and the Wellcome Trust.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , Female , Humans , Male , Antiviral Agents , Bayes Theorem , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Double-Blind Method , SARS-CoV-2 , Treatment Outcome , United Kingdom
9.
Biostatistics ; 24(4): 1000-1016, 2023 10 18.
Article in English | MEDLINE | ID: mdl-35993875

ABSTRACT

Basket trials are increasingly used for the simultaneous evaluation of a new treatment in various patient subgroups under one overarching protocol. We propose a Bayesian approach to sample size determination in basket trials that permit borrowing of information between commensurate subsets. Specifically, we consider a randomized basket trial design where patients are randomly assigned to the new treatment or control within each trial subset ("subtrial" for short). Closed-form sample size formulae are derived to ensure that each subtrial has a specified chance of correctly deciding whether the new treatment is superior to or not better than the control by some clinically relevant difference. Given prespecified levels of pairwise (in)commensurability, the subtrial sample sizes are solved simultaneously. The proposed Bayesian approach resembles the frequentist formulation of the problem in yielding comparable sample sizes for circumstances of no borrowing. When borrowing is enabled between commensurate subtrials, a considerably smaller trial sample size is required compared to the widely implemented approach of no borrowing. We illustrate the use of our sample size formulae with two examples based on real basket trials. A comprehensive simulation study further shows that the proposed methodology can maintain the true positive and false positive rates at desired levels.


Subject(s)
Research Design , Humans , Sample Size , Bayes Theorem , Computer Simulation
10.
Stat Med ; 41(30): 5789-5809, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36428217

ABSTRACT

There is a growing medical interest in combining several agents and optimizing their dosing schedules in a single trial in order to optimize the treatment for patients. Evaluating at doses of several drugs and their scheduling in a single Phase I trial simultaneously possess a number of statistical challenges, and specialized methods to tackle these have been proposed in the literature. However, the uptake of these methods is slow and implementation examples of such advanced methods are still sparse to date. In this work, we share our experience of proposing a model-based partial ordering continual reassessment method (POCRM) design for three-dimensional dose-finding in an oncology trial. In the trial, doses of two agents and the dosing schedule of one of them can be escalated/de-escalated. We provide a step-by-step summary on how the POCRM design was implemented and communicated to the trial team. We proposed an approach to specify toxicity orderings and their a-priori probabilities, and developed a number of visualization tools to communicate the statistical properties of the design. The design evaluation included both a comprehensive simulation study and considerations of the individual trial behavior. The study is now enrolling patients. We hope that sharing our experience of the successful implementation of an advanced design in practice that went through evaluations of several health authorities will facilitate a better uptake of more efficient methods in practice.


Subject(s)
Research Design , Humans , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Longitudinal Studies , Maximum Tolerated Dose
11.
J Biopharm Stat ; 32(3): 414-426, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35848802

ABSTRACT

The identification and quantification of predictive biomarkers characterize personalized medicine approaches and patient-centric clinical development. In practice, the sponsor needs evaluating whether biomarker-informed clinical development strategies are more likely to benefit current and future patients. To this end, a simple metric is proposed and assessed here quantifying the expected clinical benefit (ECB) of clinical development programmes. Using simulation scenarios and endpoints relevant to oncology, the ECB of a simple biomarker-informed strategy is shown to be specific and sensitive. Also, the ECB difference is shown to increase in the biomarker-driven incremental efficacy and with the population prevalence of biomarker-positive study participants.


Subject(s)
Medical Oncology , Neoplasms , Biomarkers , Biomarkers, Tumor/genetics , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/epidemiology , Patient-Centered Care , Precision Medicine
12.
Stat Methods Med Res ; 31(5): 899-916, 2022 05.
Article in English | MEDLINE | ID: mdl-35044274

ABSTRACT

Multi-criteria decision analysis is a quantitative approach to the drug benefit-risk assessment which allows for consistent comparisons by summarising all benefits and risks in a single score. The multi-criteria decision analysis consists of several components, one of which is the utility (or loss) score function that defines how benefits and risks are aggregated into a single quantity. While a linear utility score is one of the most widely used approach in benefit-risk assessment, it is recognised that it can result in counter-intuitive decisions, for example, recommending a treatment with extremely low benefits or high risks. To overcome this problem, alternative approaches to the scores construction, namely, product, multi-linear and Scale Loss Score models, were suggested. However, to date, the majority of arguments concerning the differences implied by these models are heuristic. In this work, we consider four models to calculate the aggregated utility/loss scores and compared their performance in an extensive simulation study over many different scenarios, and in a case study. It is found that the product and Scale Loss Score models provide more intuitive treatment recommendation decisions in the majority of scenarios compared to the linear and multi-linear models, and are more robust to the correlation in the criteria.


Subject(s)
Decision Support Techniques , Computer Simulation , Risk Assessment
13.
BMC Med Res Methodol ; 22(1): 25, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057758

ABSTRACT

BACKGROUND: Modern designs for dose-finding studies (e.g., model-based designs such as continual reassessment method) have been shown to substantially improve the ability to determine a suitable dose for efficacy testing when compared to traditional designs such as the 3 + 3 design. However, implementing such designs requires time and specialist knowledge. METHODS: We present a practical approach to developing a model-based design to help support uptake of these methods; in particular, we lay out how to derive the necessary parameters and who should input, and when, to these decisions. Designing a model-based, dose-finding trial is demonstrated using a treatment within the AGILE platform trial, a phase I/II adaptive design for novel COVID-19 treatments. RESULTS: We present discussion of the practical delivery of AGILE, covering what information was found to support principled decision making by the Safety Review Committee, and what could be contained within a statistical analysis plan. We also discuss additional challenges we encountered in the study and discuss more generally what (unplanned) adaptations may be acceptable (or not) in studies using model-based designs. CONCLUSIONS: This example demonstrates both how to design and deliver an adaptive dose-finding trial in order to support uptake of these methods.


Subject(s)
COVID-19 , Pandemics , Bayes Theorem , Dose-Response Relationship, Drug , Humans , Maximum Tolerated Dose , Research Design , SARS-CoV-2
14.
Stat Med ; 41(9): 1613-1626, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35048391

ABSTRACT

One family of designs that can noticeably improve efficiency in later stages of drug development are multi-arm multi-stage (MAMS) designs. They allow several arms to be studied concurrently and gain efficiency by dropping poorly performing treatment arms during the trial as well as by allowing to stop early for benefit. Conventional MAMS designs were developed for the setting, in which treatment arms are independent and hence can be inefficient when an order in the effects of the arms can be assumed (eg, when considering different treatment durations or different doses). In this work, we extend the MAMS framework to incorporate the order of treatment effects when no parametric dose-response or duration-response model is assumed. The design can identify all promising treatments with high probability. We show that the design provides strong control of the family-wise error rate and illustrate the design in a study of symptomatic asthma. Via simulations we show that the inclusion of the ordering information leads to better decision-making compared to a fixed sample and a MAMS design. Specifically, in the considered settings, reductions in sample size of around 15% were achieved in comparison to a conventional MAMS design.


Subject(s)
Research Design , Clinical Trials as Topic , Humans , Sample Size
15.
Pharm Stat ; 21(2): 476-495, 2022 03.
Article in English | MEDLINE | ID: mdl-34891221

ABSTRACT

There is a growing interest in early phase dose-finding clinical trials studying combinations of several treatments. While the majority of dose finding designs for such setting were proposed for oncology trials, the corresponding designs are also essential in other therapeutic areas. Furthermore, there is increased recognition of recommending the patient-specific doses/combinations, rather than a single target one that would be recommended to all patients in later phases regardless of their characteristics. In this paper, we propose a dose-finding design for a dual-agent combination trial motivated by an opiate detoxification trial. The distinguishing feature of the trial is that the (continuous) dose of one compound is defined externally by the clinicians and is individual for every patient. The objective of the trial is to define the dosing function that for each patient would recommend the optimal dosage of the second compound. Via a simulation study, we have found that the proposed design results in high accuracy of individual dose recommendation and is robust to the model misspecification and assumptions on the distribution of externally defined doses.


Subject(s)
Neoplasms , Opiate Alkaloids , Computer Simulation , Dose-Response Relationship, Drug , Humans , Maximum Tolerated Dose , Medical Oncology , Neoplasms/drug therapy , Opiate Alkaloids/therapeutic use , Research Design
16.
Clin Pharmacol Ther ; 111(3): 585-594, 2022 03.
Article in English | MEDLINE | ID: mdl-34699618

ABSTRACT

Repurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe coronavirus disease 2019 (COVID-19), but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is a US Food and Drug Administration (FDA) approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modeling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase I trial in healthy adult participants was undertaken with high-dose nitazoxanide. Participants received 1,500 mg nitazoxanide orally twice-daily with food for 7 days. Primary outcomes were safety, tolerability, optimum dose, and schedule. Intensive pharmacokinetic (PK) sampling was undertaken day 1 and 5 with minimum concentration (Cmin ) sampling on days 3 and 7. Fourteen healthy participants were enrolled between February 18 and May 11, 2021. All 14 doses were completed by 10 of 14 participants. Nitazoxanide was safe and with no significant adverse events. Moderate gastrointestinal disturbance (loose stools or diarrhea) occurred in 8 participants (57.1%), with urine and sclera discoloration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on the first dose and maintained throughout. Nitazoxanide administered at 1,500 mg b.i.d. with food was safe with acceptable tolerability a phase Ib/IIa study is now being initiated in patients with COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , Nitro Compounds/administration & dosage , Nitro Compounds/adverse effects , Nitro Compounds/pharmacokinetics , Thiazoles/administration & dosage , Thiazoles/adverse effects , Thiazoles/pharmacokinetics , Adult , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Drug Repositioning , Female , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult , COVID-19 Drug Treatment
17.
Biostatistics ; 23(3): 721-737, 2022 07 18.
Article in English | MEDLINE | ID: mdl-33409536

ABSTRACT

An important tool to evaluate the performance of a dose-finding design is the nonparametric optimal benchmark that provides an upper bound on the performance of a design under a given scenario. A fundamental assumption of the benchmark is that the investigator can arrange doses in a monotonically increasing toxicity order. While the benchmark can be still applied to combination studies in which not all dose combinations can be ordered, it does not account for the uncertainty in the ordering. In this article, we propose a generalization of the benchmark that accounts for this uncertainty and, as a result, provides a sharper upper bound on the performance. The benchmark assesses how probable the occurrence of each ordering is, given the complete information about each patient. The proposed approach can be applied to trials with an arbitrary number of endpoints with discrete or continuous distributions. We illustrate the utility of the benchmark using recently proposed dose-finding designs for Phase I combination trials with a binary toxicity endpoint and Phase I/II combination trials with binary toxicity and continuous efficacy.


Subject(s)
Benchmarking , Research Design , Bayes Theorem , Computer Simulation , Dose-Response Relationship, Drug , Humans , Maximum Tolerated Dose
18.
J Antimicrob Chemother ; 76(12): 3286-3295, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34450619

ABSTRACT

OBJECTIVES: AGILE is a Phase Ib/IIa platform for rapidly evaluating COVID-19 treatments. In this trial (NCT04746183) we evaluated the safety and optimal dose of molnupiravir in participants with early symptomatic infection. METHODS: We undertook a dose-escalating, open-label, randomized-controlled (standard-of-care) Bayesian adaptive Phase I trial at the Royal Liverpool and Broadgreen Clinical Research Facility. Participants (adult outpatients with PCR-confirmed SARS-CoV-2 infection within 5 days of symptom onset) were randomized 2:1 in groups of 6 participants to 300, 600 and 800 mg doses of molnupiravir orally, twice daily for 5 days or control. A dose was judged unsafe if the probability of 30% or greater dose-limiting toxicity (the primary outcome) over controls was 25% or greater. Secondary outcomes included safety, clinical progression, pharmacokinetics and virological responses. RESULTS: Of 103 participants screened, 18 participants were enrolled between 17 July and 30 October 2020. Molnupiravir was well tolerated at 300, 600 and 800 mg doses with no serious or severe adverse events. Overall, 4 of 4 (100%), 4 of 4 (100%) and 1 of 4 (25%) of the participants receiving 300, 600 and 800 mg molnupiravir, respectively, and 5 of 6 (83%) controls, had at least one adverse event, all of which were mild (≤grade 2). The probability of ≥30% excess toxicity over controls at 800 mg was estimated at 0.9%. CONCLUSIONS: Molnupiravir was safe and well tolerated; a dose of 800 mg twice daily for 5 days was recommended for Phase II evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , Humans , Research Design , Treatment Outcome
19.
Trials ; 22(1): 487, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34311777

ABSTRACT

BACKGROUND: There is an urgent unmet clinical need for the identification of novel therapeutics for the treatment of COVID-19. A number of COVID-19 late phase trial platforms have been developed to investigate (often repurposed) drugs both in the UK and globally (e.g. RECOVERY led by the University of Oxford and SOLIDARITY led by WHO). There is a pressing need to investigate novel candidates within early phase trial platforms, from which promising candidates can feed into established later phase platforms. AGILE grew from a UK-wide collaboration to undertake early stage clinical evaluation of candidates for SARS-CoV-2 infection to accelerate national and global healthcare interventions. METHODS/DESIGN: AGILE is a seamless phase I/IIa platform study to establish the optimum dose, determine the activity and safety of each candidate and recommend whether it should be evaluated further. Each candidate is evaluated in its own trial, either as an open label single arm healthy volunteer study or in patients, randomising between candidate and control usually in a 2:1 allocation in favour of the candidate. Each dose is assessed sequentially for safety usually in cohorts of 6 patients. Once a phase II dose has been identified, efficacy is assessed by seamlessly expanding into a larger cohort. AGILE is completely flexible in that the core design in the master protocol can be adapted for each candidate based on prior knowledge of the candidate (i.e. population, primary endpoint and sample size can be amended). This information is detailed in each candidate specific trial protocol of the master protocol. DISCUSSION: Few approved treatments for COVID-19 are available such as dexamethasone, remdesivir and tocilizumab in hospitalised patients. The AGILE platform aims to rapidly identify new efficacious and safe treatments to help end the current global COVID-19 pandemic. We currently have three candidate specific trials within this platform study that are open to recruitment. TRIAL REGISTRATION: EudraCT Number: 2020-001860-27 14 March 2020 ClinicalTrials.gov Identifier: NCT04746183  19 February 2021 ISRCTN reference: 27106947.


Subject(s)
COVID-19 , Pandemics , Cohort Studies , Humans , SARS-CoV-2 , Treatment Outcome
20.
Comput Stat Data Anal ; 158: 107187, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34083846

ABSTRACT

In many rare disease Phase II clinical trials, two objectives are of interest to an investigator: maximising the statistical power and maximising the number of patients responding to the treatment. These two objectives are competing, therefore, clinical trial designs offering a balance between them are needed. Recently, it was argued that response-adaptive designs such as families of multi-arm bandit (MAB) methods could provide the means for achieving this balance. Furthermore, response-adaptive designs based on a concept of context-dependent (weighted) information criteria were recently proposed with a focus on Shannon's differential entropy. The information-theoretic designs based on the weighted Renyi, Tsallis and Fisher informations are also proposed. Due to built-in parameters of these novel designs, the balance between the statistical power and the number of patients that respond to the treatment can be tuned explicitly. The asymptotic properties of these measures are studied in order to construct intuitive criteria for arm selection. A comprehensive simulation study shows that using the exact criteria over asymptotic ones or using information measures with more parameters, namely Renyi and Tsallis entropies, brings no sufficient gain in terms of the power or proportion of patients allocated to superior treatments. The proposed designs based on information-theoretical criteria are compared to several alternative approaches. For example, via tuning of the built-in parameter, one can find designs with power comparable to the fixed equal randomisation's but a greater number of patients responded in the trials.

SELECTION OF CITATIONS
SEARCH DETAIL