Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J R Soc Interface ; 21(216): 20240278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955228

ABSTRACT

The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.


Subject(s)
Models, Biological , Population Dynamics , Animals , Thailand/epidemiology , Cattle , Animals, Wild , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Communicable Diseases/transmission , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Ruminants/microbiology
2.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066316

ABSTRACT

Hantaviruses are zoonotic agents responsible for causing Hantavirus Cardiopulmonary Syndrome (HCPS) in the Americas, with Brazil ranking first in number of confirmed HCPS cases in South America. In this study, we simulate the monthly spread of highly lethal hantavirus in natural hosts by conjugating a Kermack-McCormick SIR model with a cellular automata model (CA), therefore simultaneously evaluating both in-cell and between-cell infection dynamics in host populations, using recently compiled data on main host species abundances and confirmed deaths by hantavirus infection. For both host species, our models predict an increase in the area of infection, with 22 municipalities where no cases have been confirmed to date expected to have at least one case in the next decade, and a reduction in infection in 11 municipalities. Our findings support existing research and reveal new areas where hantavirus is likely to spread within recognized epicenters. Highlighting spatial-temporal trends and potential expansion, we emphasize the increased risk due to pervasive habitat fragmentation and agricultural expansion. Consistent prevention efforts and One Health actions are crucial, especially in newly identified high-risk municipalities.


Subject(s)
Hantavirus Infections , Orthohantavirus , Brazil/epidemiology , Animals , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Humans , Disease Reservoirs/virology , Hantavirus Pulmonary Syndrome/epidemiology , Hantavirus Pulmonary Syndrome/virology , Zoonoses/epidemiology , Zoonoses/virology
3.
Mem Inst Oswaldo Cruz ; 119: e230226, 2024.
Article in English | MEDLINE | ID: mdl-38865577

ABSTRACT

BACKGROUND: Monitoring and analysing the infection rates of the vector of Trypanosoma cruzi, that causes Chagas disease, helps assess the risk of transmission. OBJECTIVES: A study was carried out on triatomine in the State of Paraná, Brazil, between 2012 and 2021 and a comparison was made with a previous study. This was done to assess the risk of disease transmission. METHODS: Ecological niche models based on climate and landscape variables were developed to predict habitat suitability for the vectors as a proxy for risk of occurrence. FINDINGS: A total of 1,750 specimens of triatomines were recorded, of which six species were identified. The overall infection rate was 22.7%. The areas with the highest risk transmission of T. cruzi are consistent with previous predictions in municipalities. New data shows that climate models are more accurate than landscape models. This is likely because climate suitability was higher in the previous period. MAIN CONCLUSION: Regardless of uneven sampling and potential biases, risk remains high due to the wide presence of infected vectors and high environmental suitability for vector species throughout the state and, therefore, improvements in public policies aimed at wide dissemination of knowledge about the disease are recommended to ensure the State remains free of Chagas disease.


Subject(s)
Chagas Disease , Insect Vectors , Triatominae , Trypanosoma cruzi , Chagas Disease/transmission , Animals , Insect Vectors/classification , Insect Vectors/parasitology , Brazil/epidemiology , Triatominae/classification , Triatominae/parasitology , Humans , Risk Factors , Risk Assessment , Ecosystem
4.
Virus Evol ; 10(1): vead079, 2024.
Article in English | MEDLINE | ID: mdl-38361817

ABSTRACT

Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.

5.
J R Soc Interface ; 21(210): 20230425, 2024 01.
Article in English | MEDLINE | ID: mdl-38196378

ABSTRACT

The speed of spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease 2019 (COVID-19) pandemic highlights the importance of understanding how infections are transmitted in a highly connected world. Prior to vaccination, changes in human mobility patterns were used as non-pharmaceutical interventions to eliminate or suppress viral transmission. The rapid spread of respiratory viruses, various intervention approaches, and the global dissemination of SARS-CoV-2 underscore the necessity for epidemiological models that incorporate mobility to comprehend the spread of the virus. Here, we introduce a metapopulation susceptible-exposed-infectious-recovered model parametrized with human movement data from 340 cities in China. Our model replicates the early-case trajectory in the COVID-19 pandemic. We then use machine learning algorithms to determine which network properties best predict spread between cities and find travel time to be most important, followed by the human movement-weighted personalized PageRank. However, we show that travel time is most influential locally, after which the high connectivity between cities reduces the impact of travel time between individual cities on transmission speed. Additionally, we demonstrate that only significantly reduced movement substantially impacts infection spread times throughout the network.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cities , SARS-CoV-2
6.
Mem. Inst. Oswaldo Cruz ; 119: e230226, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558561

ABSTRACT

BACKGROUND Monitoring and analysing the infection rates of the vector of Trypanosoma cruzi, that causes Chagas disease, helps assess the risk of transmission. OBJECTIVES A study was carried out on triatomine in the State of Paraná, Brazil, between 2012 and 2021 and a comparison was made with a previous study. This was done to assess the risk of disease transmission. METHODS Ecological niche models based on climate and landscape variables were developed to predict habitat suitability for the vectors as a proxy for risk of occurrence. FINDINGS A total of 1,750 specimens of triatomines were recorded, of which six species were identified. The overall infection rate was 22.7%. The areas with the highest risk transmission of T. cruzi are consistent with previous predictions in municipalities. New data shows that climate models are more accurate than landscape models. This is likely because climate suitability was higher in the previous period. MAIN CONCLUSION Regardless of uneven sampling and potential biases, risk remains high due to the wide presence of infected vectors and high environmental suitability for vector species throughout the state and, therefore, improvements in public policies aimed at wide dissemination of knowledge about the disease are recommended to ensure the State remains free of Chagas disease.

7.
Sci Rep ; 13(1): 18636, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903862

ABSTRACT

Malaria remains a significant public health problem worldwide, particularly in low-income regions with limited access to healthcare. Despite the use of antimalarial drugs, transmission remains an issue in Colombia, especially among indigenous populations in remote areas. In this study, we used an SIR Ross MacDonald model that considered land use change, temperature, and precipitation to analyze eco epidemiological parameters and the impact of time lags on malaria transmission in La Pedrera-Amazonas municipality. We found changes in land use between 2007 and 2020, with increases in forested areas, urban infrastructure and water edges resulting in a constant increase in mosquito carrying capacity. Temperature and precipitation variables exhibited a fluctuating pattern that corresponded to rainy and dry seasons, respectively and a marked influence of the El Niño climatic phenomenon. Our findings suggest that elevated precipitation and temperature increase malaria infection risk in the following 2 months. The risk is influenced by the secondary vegetation and urban infrastructure near primary forest formation or water body edges. These results may help public health officials and policymakers develop effective malaria control strategies by monitoring precipitation, temperature, and land use variables to flag high-risk areas and critical periods, considering the time lag effect.


Subject(s)
Malaria , Animals , Humans , Colombia/epidemiology , Seasons , Temperature , Water
8.
Nat Commun ; 14(1): 6854, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891177

ABSTRACT

The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Animals, Wild , Mammals , Risk Factors , Livestock
9.
Article in English | MEDLINE | ID: mdl-37569037

ABSTRACT

Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.


Subject(s)
Biodiversity , Malaria , Animals , Humans , Brazil/epidemiology , Forests , Malaria/epidemiology , Birds , Ecosystem
11.
Proc Biol Sci ; 289(1975): 20220397, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35611534

ABSTRACT

Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that several closely related viruses have been discovered and sarbecovirus-host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.


Subject(s)
Chiroptera , Viruses , Animals , COVID-19 , Chiroptera/virology , Humans , Public Health , SARS-CoV-2
12.
Sci Data ; 9(1): 155, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383183

ABSTRACT

Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.


Subject(s)
Chiroptera , Animals , Biodiversity , Databases, Factual , Ecosystem
13.
mBio ; 13(2): e0298521, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35229639

ABSTRACT

Data that catalogue viral diversity on Earth have been fragmented across sources, disciplines, formats, and various degrees of open sharing, posing challenges for research on macroecology, evolution, and public health. Here, we solve this problem by establishing a dynamically maintained database of vertebrate-virus associations, called The Global Virome in One Network (VIRION). The VIRION database has been assembled through both reconciliation of static data sets and integration of dynamically updated databases. These data sources are all harmonized against one taxonomic backbone, including metadata on host and virus taxonomic validity and higher classification; additional metadata on sampling methodology and evidence strength are also available in a harmonized format. In total, the VIRION database is the largest open-source, open-access database of its kind, with roughly half a million unique records that include 9,521 resolved virus "species" (of which 1,661 are ICTV ratified), 3,692 resolved vertebrate host species, and 23,147 unique interactions between taxonomically valid organisms. Together, these data cover roughly a quarter of mammal diversity, a 10th of bird diversity, and ∼6% of the estimated total diversity of vertebrates, and a much larger proportion of their virome than any previous database. We show how these data can be used to test hypotheses about microbiology, ecology, and evolution and make suggestions for best practices that address the unique mix of evidence that coexists in these data. IMPORTANCE Animals and their viruses are connected by a sprawling, tangled network of species interactions. Data on the host-virus network are available from several sources, which use different naming conventions and often report metadata in different levels of detail. VIRION is a new database that combines several of these existing data sources, reconciles taxonomy to a single consistent backbone, and reports metadata in a format designed by and for virologists. Researchers can use VIRION to easily answer questions like "Can any fish viruses infect humans?" or "Which bats host coronaviruses?" or to build more advanced predictive models, making it an unprecedented step toward a full inventory of the global virome.


Subject(s)
Chiroptera , Viruses , Animals , DNA Viruses , Virion , Virome , Viruses/genetics
14.
Ecology ; 103(4): e3640, 2022 04.
Article in English | MEDLINE | ID: mdl-35060633

ABSTRACT

Data papers and open databases have revolutionized contemporary science, as they provide the long-needed incentive to collaborate in large international teams and make natural history information widely available. Nevertheless, most data papers have focused on species occurrence or abundance, whereas interactions have received much less attention. To help fill this gap, we have compiled a georeferenced data set of interactions between 93 bat species of the family Phyllostomidae (Chiroptera) and 501 plant species of 68 families. Data came from 169 studies published between 1957 and 2007 covering the entire Neotropical Region, with most records from Brazil (34.5% of all study sites), Costa Rica (16%), and Mexico (14%). Our data set includes 2571 records of frugivory (75.1% of all records) and nectarivory (24.9%). The best represented bat genera are Artibeus (28% of all records), Carollia (24%), Sturnira (10.1%), and Glossophaga (8.8%). Carollia perspicillata (187), Artibeus lituratus (125), Artibeus jamaicensis (94), Glossophaga soricina (86), and Artibeus planirostris (74) were the bat species with the broadest diets recorded based on the number of plant species. Among the plants, the best represented families were Moraceae (17%), Piperaceae (15.4%), Urticaceae (9.2%), and Solanaceae (9%). Plants of the genera Cecropia (46), Ficus (42), Piper (40), Solanum (31), and Vismia (27) exhibited the largest number of interactions. These data are stored as arrays (records, sites, and studies) organized by logical keys and rich metadata, which helped to compile the information on different ecological and geographic scales, according to how they should be used. Our data set on bat-plant interactions is by far the most extensive, both in geographic and taxonomic terms, and includes abiotic information of study sites, as well as ecological information of plants and bats. It has already facilitated several studies and we hope it will stimulate novel analyses and syntheses, in addition to pointing out important gaps in knowledge. Data are provided under the Creative Commons Attribution 4.0 International License. Please cite this paper when the data are used in any kind of publication related to research, outreach, and teaching activities.


Subject(s)
Chiroptera , Ficus , Piper , Animals , Brazil , Costa Rica , Humans
15.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221363, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394009

ABSTRACT

Abstract Mammals are charismatic organisms that play a fundamental role in ecological functions and ecosystem services, such as pollination, seed dispersal, nutrient cycling, and pest control. The state of São Paulo represents only 3% of the Brazilian territory but holds 33% of its mammalian diversity. Most of its territory is dominated by agriculture, pastures, and urban areas which directly affect the diversity and persistence of mammals in the landscape. In addition, São Paulo has the largest port in Latin America and the largest offshore oil reservoir in Brazil, with a 600 km stretch of coastline with several marine mammal species. These human-made infrastructures affect the diversity, distribution, ecology, and the future of mammals in the state. Here, we answer five main questions: 1) What is the diversity of wild mammals in São Paulo state? 2) Where are they? 3) What is their positive and negative impact on human well-being? 4) How do mammals thrive in human-modified landscapes? 5) What is the future of mammals in the state? The state of São Paulo holds 255 species of native mammals, with four endemic species, two of them globally endangered. At least six species (two marsupials, Giant otter, Pampas deer, Brazilian dwarf brocket deer, and Giant armadillo) were extirpated from the state due to hunting and habitat loss. The intense human land use in the state forced many mammalian species to change their diet to cope with the intense fragmentation and agriculture. Large-scale monoculture has facilitated the invasion of exotic species such as wild boars (javali) and the European hare. Several "savanna-dwelling" species are expanding their ranges (Maned wolf, Brocket deer) over deforested areas and probably reflect changes towards a drier climate. Because the state has the largest road system, about 40,000 mammals from 33 species are killed per year in collisions causing an economic loss of 12 million dollars/year. The diversity of mammals is concentrated in the largest forest remnants of Serra do Mar and in the interior of the State, mainly in the regions of Ribeirão Preto and Jundiaí. Sampling gaps are concentrated throughout the interior of the state, particularly in the northwest region. Wild mammals play a fundamental role in many ecosystem services, but they can also be a concern in bringing new emergent diseases to humans. Although the taxonomy of mammals seems to be well known, we show that new species are continuously being discovered in the state. Therefore, continuous surveys using traditional and new technologies (eDNA, iDNA, drones), long-term population monitoring, investigation of the interface of human-wildlife conflict, and understanding of the unique ecosystem role played by mammals are future avenues for promoting sustainable green landscapes allied to human well-being in the state. The planting of forest or savanna corridors, particularly along with major river systems, in the plateau, controlling illegal hunting in the coastal areas, managing fire regimes in the Cerrado, and mitigating roadkill must be prioritized to protect this outstanding mammal diversity.


Resumo Os mamíferos são organismos carismáticos que desempenham um papel fundamental na função ecológica e nos serviços ecossistêmicos, como polinização, dispersão de sementes, ciclagem de nutrientes e controle de pragas. O Estado de São Paulo representa apenas 3% do território brasileiro, mas detém 33% da diversidade de mamíferos. A maior parte de seu território é dominado pela agricultura, pastagens e áreas urbanas que afetam diretamente a diversidade e a persistência dos mamíferos na paisagem. Além disso, São Paulo possui o maior porto da América Latina e o maior reservatório de petróleo costeiro do Brasil, com 600 km de extensão de litoral com diversas espécies de mamíferos marinhos. Essas infraestruturas afetam a diversidade, distribuição, ecologia e o futuro dos mamíferos no estado. Aqui, respondemos cinco perguntas principais: 1) Qual é a diversidade de mamíferos silvestres no Estado de São Paulo? 2) Onde eles ocorrem? 3) Qual é o seu impacto positivo e negativo no bem-estar humano? 4) Como os mamíferos persistem em paisagens modificadas pelo homem? 5) Qual é o futuro dos mamíferos no estado? O estado de São Paulo possui 255 espécies de mamíferos nativos, com quatro espécies endêmicas, duas delas globalmente ameaçadas de extinção. Pelo menos seis espécies (dois marsupiais, ariranha, veado-campeiro, veado-cambuta e tatu-canastra) foram extirpadas do estado devido à caça e perda de habitat. O intenso uso humano da terra no estado forçou muitas espécies de mamíferos a mudar sua dieta para lidar com a intensa fragmentação e agricultura. A monocultura em larga escala facilitou a invasão de espécies exóticas, como porcos selvagens (javaporco) e a lebre europeia. Várias espécies de áreas abertas estão expandindo suas áreas de distribuição (lobo-guará, veado-catingueiro) sobre áreas desmatadas e provavelmente refletem mudanças em direção a um clima mais seco. Como o estado possui o maior sistema rodoviário do Brasil, cerca de 40 mil mamíferos de 33 espécies são mortos por ano em colisões, causando um prejuízo econômico de 12 milhões de dólares/ano. A diversidade de mamíferos está concentrada nos maiores remanescentes florestais da Serra do Mar e no interior do Estado, principalmente nas regiões de Ribeirão Preto e Jundiaí. As lacunas amostrais estão concentradas em todo o interior do estado, principalmente na região noroeste. Os mamíferos silvestres desempenham um papel fundamental em muitos serviços ecossistêmicos, mas também podem ser uma preocupação em trazer novas doenças emergentes para as populações humanas. Embora a taxonomia de mamíferos pareça ser bem conhecida, mostramos que novas espécies estão sendo continuamente descobertas no estado. Portanto, pesquisas usando tecnologias tradicionais e novas (eDNA, iDNA, drones), monitoramento populacional de longo prazo, a investigação da interface do conflito homem-vida selvagem e a compreensão do papel único no ecossistema desempenhado pelos mamíferos são um caminho futuro para promover uma paisagem verde sustentável aliada ao bem-estar humano no estado. O plantio de corredores florestais ou de cerrado, principalmente junto aos principais sistemas fluviais, no planalto, o controle da caça ilegal nas áreas costeiras, o manejo dos regimes de fogo no Cerrado e a mitigação dos atropelamentos devem ser uma prioridade para proteger essa notável diversidade de mamíferos.

16.
PLoS One ; 16(11): e0254467, 2021.
Article in English | MEDLINE | ID: mdl-34818325

ABSTRACT

Cross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.


Subject(s)
Human-Animal Interaction , Parks, Recreational , Public Health , Zoonoses/transmission , Adult , Aged , Animals , Animals, Wild , Female , Health Surveys , Humans , Male , Middle Aged , Uganda , Young Adult
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200358, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34538140

ABSTRACT

In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Disease Reservoirs/virology , Global Health , Pandemics/prevention & control , Zoonoses/prevention & control , Zoonoses/virology , Animals , Animals, Wild , COVID-19/prevention & control , COVID-19/veterinary , Ecology , Humans , Laboratories , Machine Learning , Risk Factors , SARS-CoV-2 , Viruses , Zoonoses/epidemiology
18.
Viruses ; 11(11)2019 10 31.
Article in English | MEDLINE | ID: mdl-31683644

ABSTRACT

BACKGROUND: Hantavirus disease in humans is rare but frequently lethal in the Neotropics. Several abundant and widely distributed Sigmodontinae rodents are the primary hosts of Orthohantavirus and, in combination with other factors, these rodents can shape hantavirus disease. Here, we assessed the influence of host diversity, climate, social vulnerability and land use change on the risk of hantavirus disease in Brazil over 24 years. METHODS: Landscape variables (native forest, forestry, sugarcane, maize and pasture), climate (temperature and precipitation), and host biodiversity (derived through niche models) were used in spatiotemporal models, using the 5570 Brazilian municipalities as units of analysis. RESULTS: Amounts of native forest and sugarcane, combined with temperature, were the most important factors influencing the increase of disease risk. Population at risk (rural workers) and rodent host diversity also had a positive effect on disease risk. CONCLUSIONS: Land use change-especially the conversion of native areas to sugarcane fields-can have a significant impact on hantavirus disease risk, likely by promoting the interaction between the people and the infected rodents. Our results demonstrate the importance of understanding the interactions between landscape change, rodent diversity, and hantavirus disease incidence, and suggest that land use policy should consider disease risk. Meanwhile, our risk map can be used to help allocate preventive measures to avoid disease.


Subject(s)
Hantavirus Infections/transmission , Hantavirus Pulmonary Syndrome/transmission , Rodentia/virology , Spatio-Temporal Analysis , Zoonoses/virology , Animals , Brazil/epidemiology , Climate , Communicable Diseases, Emerging , Disease Reservoirs/virology , Ecosystem , Farmers , Orthohantavirus , Hantavirus Infections/epidemiology , Hantavirus Infections/prevention & control , Hantavirus Pulmonary Syndrome/epidemiology , Hantavirus Pulmonary Syndrome/prevention & control , Humans , Public Health
19.
Nat Ecol Evol ; 3(11): 1525-1532, 2019 11.
Article in English | MEDLINE | ID: mdl-31611677

ABSTRACT

How are ecological systems assembled? Identifying common structural patterns within complex networks of interacting species has been a major challenge in ecology, but researchers have focused primarily on single interaction types aggregating in space or time. Here, we shed light on the assembly rules of a multilayer network formed by frugivory and nectarivory interactions between bats and plants in the Neotropics. By harnessing a conceptual framework known as the integrative hypothesis of specialization, our results suggest that phylogenetic constraints separate species into different layers and shape the network's modules. Then, the network shifts to a nested structure within its modules where interactions are mainly structured by geographic co-occurrence. Finally, organismal traits related to consuming fruits or nectar determine which bat species are central or peripheral to the network. Our results provide insights into how different processes contribute to the assemblage of ecological systems at different levels of organization, resulting in a compound network topology.


Subject(s)
Ecosystem , Plants , Ecology , Phylogeny
20.
PLoS Negl Trop Dis ; 13(8): e0007655, 2019 08.
Article in English | MEDLINE | ID: mdl-31404077

ABSTRACT

Several viruses from the genus Orthohantavirus are known to cause lethal disease in humans. Sigmodontinae rodents are the main hosts responsible for hantavirus transmission in the tropical forests, savannas, and wetlands of South America. These rodents can shed different hantaviruses, such as the lethal and emerging Araraquara orthohantavirus. Factors that drive variation in host populations may influence hantavirus transmission dynamics within and between populations. Landscape structure, and particularly areas with a predominance of agricultural land and forest remnants, is expected to influence the proportion of hantavirus rodent hosts in the Atlantic Forest rodent community. Here, we tested this using 283 Atlantic Forest rodent capture records and geographically weighted models that allow us to test if predictors vary spatially. We also assessed the correspondence between proportions of hantavirus hosts in rodent communities and a human vulnerability to hantavirus infection index across the entire Atlantic Forest biome. We found that hantavirus host proportions were more positively influenced by landscape diversity than by a particular habitat or agricultural matrix type. Local small mammal diversity also positively influenced known pathogenic hantavirus host proportions, indicating that a plasticity to habitat quality may be more important for these hosts than competition with native forest dwelling species. We found a consistent positive effect of sugarcane and tree plantation on the proportion of rodent hosts, whereas defaunation intensity did not correlate with the proportion of hosts of potentially pathogenic hantavirus genotypes in the community, indicating that non-defaunated areas can also be hotspots for hantavirus disease outbreaks. The spatial match between host hotspots and human disease vulnerability was 17%, while coldspots matched 20%. Overall, we discovered strong spatial and land use change influences on hantavirus hosts at the landscape level across the Atlantic Forest. Our findings suggest disease surveillance must be reinforced in the southern and southeastern regions of the biome where the highest predicted hantavirus host proportion and levels of vulnerability spatially match. Importantly, our analyses suggest there may be more complex rodent community dynamics and interactions with human disease than currently hypothesized.


Subject(s)
Biodiversity , Forests , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Orthohantavirus/isolation & purification , Rodentia/growth & development , Rodentia/virology , Agriculture/methods , Animals , Disease Reservoirs/virology , Disease Transmission, Infectious , Ecosystem , Orthohantavirus/classification , Hantavirus Infections/transmission , Humans , Rodentia/classification , South America/epidemiology , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL