Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 590: 216843, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579893

ABSTRACT

Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.


Subject(s)
Autophagy , Cellular Senescence , Neoplasms , Neoplastic Stem Cells , Polyploidy , Humans , Cellular Senescence/drug effects , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Animals , Epithelial-Mesenchymal Transition
4.
Stem Cell Rev Rep ; 18(1): 198-213, 2022 01.
Article in English | MEDLINE | ID: mdl-34355273

ABSTRACT

Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, "metabostemness" denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.


Subject(s)
Mitophagy , Neoplasms , Cell Differentiation/physiology , Humans , Mitochondria/metabolism , Mitophagy/genetics , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
5.
Life Sci ; 264: 118722, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33160989

ABSTRACT

AIMS: Secretory clusterin (sCLU) plays an important role in tumor development and cancer progression. However, the molecular mechanisms and physiological functions of sCLU in oral cancer is unclear. We examined the impact of sCLU-mediated autophagy in cell survival and apoptosis inhibition in oral cancer. MAIN METHODS: Immunohistochemical analysis was performed to analyze protein expression in patient samples. Autophagy and mitophagy was studied by immunofluorescence microscopy and Western blot. The gain and loss of function was studied by overexpression of plasmid and siRNA approaches respectively. Cellular protection against nutrient starvation and therapeutic stress by sCLU was studied by cell viability, caspase assay and meta-analysis. KEY FINDINGS: The data from oral cancer patients showed that the expression levels of sCLU, ATG14, ULK1, and PARKIN increased in grade-wise manners. Interestingly, sCLU overexpression promoted autophagy through AMPK/Akt/mTOR signaling pathway leading to cell survival and protection from long exposure serum starvation induced-apoptosis. Additionally, sCLU was demonstrated to interact with ULK1 and inhibition of ULK1 activity by SBI206965 was found to abolish sCLU-induced autophagy indicating critical role of ULK1 in induction of autophagy. Furthermore, sCLU was observed to promote expression of mitophagy-associated proteins in serum starvation conditions to protect cells from nutrient deprivation. The meta-analysis elucidated that high CLU expression is associated with therapy resistance in cancer and we demonstrated that sCLU-mediated mitophagy was revealed to inhibit cell death by cisplatin. SIGNIFICANCE: The present investigation has highlighted the probable implications of the clusterin-induced autophagy in cell survival and inhibition of apoptosis in oral cancer.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Clusterin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mouth Neoplasms/pathology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics , Autophagy/genetics , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Mitophagy/genetics , Mouth Neoplasms/genetics , Neoplasms, Squamous Cell/genetics , Neoplasms, Squamous Cell/pathology
6.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Article in English | MEDLINE | ID: mdl-31544977

ABSTRACT

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Subject(s)
Autophagy/drug effects , Cellular Senescence/drug effects , Fatty Acids, Nonesterified/biosynthesis , Lysosomal Membrane Proteins/metabolism , Plant Lectins/pharmacology , Prostatic Neoplasms/drug therapy , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/physiology , Benzamides/pharmacology , Carbamates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/physiology , Humans , Male , Naphthols/pharmacology , PC-3 Cells , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Sterol Esterase/antagonists & inhibitors , Thiadiazoles/pharmacology , Up-Regulation/drug effects
7.
Food Chem Toxicol ; 136: 111073, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31877368

ABSTRACT

Terminalia bellirica (TB) has been used in traditional Indian medical system, Ayurveda. However, the mechanism underlying the efficacy of the TB extract against oral squamous cell carcinoma (OSCC) is yet to be explored. The present study established a connecting link between the TB extract induced apoptosis and autophagy in relation to reactive oxygen species (ROS). Our study revealed, that gallic acid in the TB extract possess a strong free radical scavenging capacity contributing towards the selective anti-proliferative activity. Furthermore, TB extract markedly enhanced the accumulation of ROS that facilitated mitochondrial apoptosis through DNA damage, indicating ROS as the vital component in regulation of apoptosis. This effect was effectively reversed by the use of a ROS scavenger, N-acetyl cysteine (NAC). Moreover, it was observed to induce autophagy; however, it attenuated the autophagosome-lysosome fusion in Cal33 cells without altering the lysosomal activity. Pharmacological inhibitors of autophagy, namely, 3-methyladenine and chloroquine, were demonstarated to regulate the stage-specific progression of autophagy post treatment with the TB extract, favouring subsequent activation of apoptosis. These findings revealed, presence of gallic acid in TB extract below NOAEL value causes oxidative upset in oral cancer cells and promote programmed cell death which has a potential therapeutic value against oral squamous cell carcinoma.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Mouth Neoplasms/physiopathology , Plant Extracts/pharmacology , Terminalia/chemistry , Antineoplastic Agents, Alkylating/analysis , Carcinoma, Squamous Cell , Cell Line, Tumor , DNA Damage/drug effects , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Plant Extracts/analysis , Reactive Oxygen Species/metabolism
9.
Adv Exp Med Biol ; 1123: 179-194, 2019.
Article in English | MEDLINE | ID: mdl-31016601

ABSTRACT

Mitochondria are customarily acknowledged as the powerhouse of the cell by virtue of their indispensable role in cellular energy production. In addition, it plays an important role in pluripotency, differentiation, and reprogramming. This review describes variation in the stem cells and their mitochondrial heterogeneity. The mitochondrial variation can be described in terms of structure, function, and subcellular distribution. The mitochondria cristae development status and their localization patterns determine the oxygen consumption rate and ATP production which is a central controller of stem cell maintenance and differentiation. Generally, stem cells show spherical, immature mitochondria with perinuclear distribution. Such mitochondria are metabolically less energetic and low polarized. Moreover, mostly glycolytic energy production is found in pluripotent stem cells with a variation in naïve stem cells which perform oxidative phosphorylation (OXPHOS). This article also describes the structural and functional journey of mitochondria during development. Future insight into underlying mechanisms associated with such alternation in mitochondria of stem cells during embryonic stages could uncover mitochondrial adaptability on cellular demands. Moreover, investigating the importance of mitochondria in pluripotency maintenance might unravel the cause of mitochondrial diseases, aging, and regenerative therapies.


Subject(s)
Mitochondria , Pluripotent Stem Cells/cytology , Cell Differentiation , Glycolysis , Oxidative Phosphorylation
10.
Phytomedicine ; 55: 179-190, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30668428

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT), a key step in oral cancer progression, is associated with invasion, metastasis, and therapy resistance, thus targeting the EMT represents a critical therapeutic strategy for the treatment of oral cancer metastasis. Our previous study showed that Abrus agglutinin (AGG), a plant lectin, induces both intrinsic and extrinsic apoptosis to activate the tumor inhibitory mechanism. OBJECTIVE: This study aimed to investigate the role of AGG in modulating invasiveness and stemness through EMT inhibition for the development of antineoplastic agents against oral cancer. METHODS: The EMT- and stemness-related proteins were studied in oral cancer cells using Western blot analysis and fluorescence microscopy. The potential mechanisms of Snail downregulation through p73 activation in FaDu cells were evaluated using Western blot analysis, immunoprecipitation, confocal microscopy, and molecular docking analysis. Immunohistochemical staining of the tumor samples of AGG-treated FaDu-xenografted nude mice was performed. RESULTS: At the molecular level, AGG-induced p73 suppressed Snail expression, leading to EMT inhibition in FaDu cells. Notably, AGG promoted the translocation of Snail from the nucleus to the cytoplasm in FaDu cells and triggered its degradation through ubiquitination. In this setting, AGG inhibited the interaction between Snail and p73 in FaDu cells, resulting in p73 activation and EMT inhibition. Moreover, in epidermal growth factor (EGF)-stimulated FaDu cells, AGG abolished the upregulation of extracellular signal-regulated kinase (ERK)1/2 that plays a pivotal role in the upregulation of Snail to regulate the EMT phenotypes. In immunohistochemistry analysis, FaDu xenografts from AGG-treated mice showed decreased expression of Snail, SOX2, and vimentin and increased expression of p73 and E-cadherin compared with the control group, confirming EMT inhibition as part of its anticancer efficacy against oral cancer. CONCLUSION: In summary, AGG stimulates p73 in restricting EGF-induced EMT, invasiveness, and stemness by inhibiting the ERK/Snail pathway to facilitate the development of alternative therapeutics for oral cancer.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Mouth Neoplasms/drug therapy , Plant Lectins/pharmacology , Snail Family Transcription Factors/metabolism , Tumor Protein p73/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Humans , Mice, Nude , Molecular Docking Simulation , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Plant Lectins/chemistry , Snail Family Transcription Factors/chemistry , Snail Family Transcription Factors/genetics , Tumor Protein p73/chemistry , Tumor Protein p73/genetics , Ubiquitination , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
11.
Cell Mol Life Sci ; 76(1): 27-43, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30267101

ABSTRACT

"Cellular reprogramming" facilitates the generation of desired cellular phenotype through the cell fate transition by affecting the mitochondrial dynamics and metabolic reshuffle in the embryonic and somatic stem cells. Interestingly, both the processes of differentiation and dedifferentiation witness a drastic and dynamic alteration in the morphology, number, distribution, and respiratory capacity of mitochondria, which are tightly regulated by the fission/fusion cycle, and mitochondrial clearance through autophagy following mitochondrial fission. Intriguingly, mitophagy is said to be essential in the differentiation of stem cells into various lineages such as erythrocytes, eye lenses, neurites, myotubes, and M1 macrophages. Mitophagy is also believed to play a central role in the dedifferentiation of a terminally differentiated cell into an induced pluripotent cell and in the acquisition of 'stemness' in cancer cells. Mitophagy-induced alteration in the mitochondrial dynamics facilitates metabolic shift, either into a glycolytic phenotype or into an OXPHOS phenotype, depending on the cellular demand. Mitophagy-induced rejuvenation of mitochondria regulates the transition of bioenergetics and metabolome, remodeling which facilitates an alteration in their cellular developmental capability. This review describes the detailed mechanism of the process of mitophagy and its association with cellular programming through alteration in the mitochondrial energetics. The metabolic shift post mitophagy is suggested to be a key factor in the cell fate transition during differentiation and dedifferentiation.


Subject(s)
Cellular Reprogramming , Mitophagy , Stem Cells/metabolism , Animals , Cell Differentiation , Energy Metabolism , Glycolysis , Humans , Metabolome , Mitochondrial Dynamics , Oxidative Phosphorylation , Stem Cells/cytology
12.
Cell Prolif ; 51(1)2018 Feb.
Article in English | MEDLINE | ID: mdl-29171106

ABSTRACT

OBJECTIVE: We inspected the relevance of CD44, ABCB1 and ADAM17 in OSCC stemness and deciphered the role of autophagy/mitophagy in regulating stemness and chemoresistance. MATERIAL AND METHODS: A retrospective analysis of CD44, ABCB1 and ADAM17 with respect to the various clinico-pathological factors and their correlation was analysed in sixty OSCC samples. Furthermore, the stemness and chemoresistance were studied in resistant oral cancer cells using sphere formation assay, flow cytometry and florescence microscopy. The role of autophagy/mitophagy was investigated by transient transfection of siATG14, GFP-LC3, tF-LC3, mKeima-Red-Mito7 and Western blot analysis of autophagic and mitochondrial proteins. RESULTS: In OSCC, high CD44, ABCB1 and ADAM17 expressions were correlated with higher tumour grades and poor differentiation and show significant correlation in their co-expression. In vitro and OSCC tissue double labelling confirmed that CD44+ cells co-expresses ABCB1 and ADAM17. Further, cisplatin (CDDP)-resistant FaDu cells displayed stem-like features and higher CD44, ABCB1 and ADAM17 expression. Higher autophagic flux and mitophagy were observed in resistant FaDu cells as compared to parental cells, and inhibition of autophagy led to the decrease in stemness, restoration of mitochondrial proteins and reduced expression of CD44, ABCB1 and ADAM17. CONCLUSION: The CD44+ /ABCB1+ /ADAM17+ expression in OSCC is associated with stemness and chemoresistance. Further, this study highlights the involvement of mitophagy in chemoresistance and autophagic regulation of stemness in OSCC.


Subject(s)
ADAM17 Protein/metabolism , Autophagy/physiology , Drug Resistance, Neoplasm , Hyaluronan Receptors/metabolism , Mouth Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Autophagy/drug effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Mouth Neoplasms/drug therapy , Transcriptional Activation/drug effects , Transcriptional Activation/physiology , Up-Regulation
13.
Biochim Biophys Acta Mol Cell Res ; 1865(3): 480-495, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29229477

ABSTRACT

PUMA, a BH3-only pro-apoptotic Bcl2 family protein, is known to translocate from the cytosol into the mitochondria in order to induce apoptosis. Interestingly, the induction of PUMA by p53 plays a critical role in DNA damage-induced apoptosis. In this study, we reported mitophagy inducing potential of PUMA triggered by phytolectin Abrus agglutinin (AGG) in U87MG glioblastoma cells and established AGG-induced ceramide acts as the chief mediator of mitophagy dependent cell death through activation of both mitochondrial ROS as well as ER stress. Importantly, AGG upregulates PUMA expression in U87MG cells with the generation of dysfunctional mitochondria, with gain and loss of function of PUMA is shown to alter mitophagy induction. At the molecular level, our study identified that the LC3 interacting region (LIR) located at the C-terminal end of PUMA interacts with LC3 in order to stimulate mitophagy. In addition, AGG is also found to trigger ubiquitination of PUMA which in turn interacted with p62 for prompting mitophagy suggesting that AGG turns on PUMA-mediated mitophagy in U87MG cells in both p62-dependent as well as in p62-independent manner. Interestingly, AGG-triggered ceramide production through activation of ceramide synthase-1 leads to induction of ER stress and ROS accumulation to promote mitochondrial damage as well as mitophagy. Further, upon pre-treatment with Mdivi-1, DRP1 inhibitor, AGG exposure results in suppression of apoptosis in U87MG cells indicating AGG-induced mitophagy switches to apoptosis that can be exploited for better cancer therapeutics.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Mitophagy/genetics , Neoplasms/drug therapy , Plant Lectins/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins/genetics , Apoptosis/genetics , Ceramides/biosynthesis , Ceramides/genetics , Cytosol/metabolism , DNA Damage/genetics , HeLa Cells , Humans , Mitochondria/genetics , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
14.
Adv Exp Med Biol ; 1041: 207-233, 2017.
Article in English | MEDLINE | ID: mdl-29204835

ABSTRACT

Cancer stem cells (CSCs) play important role in tumor growth and metastasis coupled with increased recurrences and acquired therapeutic resistance in oral cancer. The tumor microenvironment imposes intense pressure in cancer evolution in response to adverse growth conditions, resource limitation and immune predation. Here, we discussed the dynamic interplay between cancer stem cells and tumor microenvironment in the formation of intratumoral heterogeneity to modulate tumor progression. The CSCs niche provide a special microhabitat for survival, maintenance of stemness and tumor re-propagation. Moreover, adaptive cellular behavior might be driven by tough tumor microenvironmental selective forces which highly regulate alterations in the gene expression leading to the reprogramming of signaling pathways generating stem-like characteristics, adaptive metabolic plasticity and energy fueling with autophagy to permit the CSCs to sustain in the ever changing microenvironments during tumor progression. On the other hand, CSCs also direct the tumor microenvironment modulation and remodeling in its favour. The cytokines, chemokines and growth factors released from CSCs regulates neoangiogensis, differentiation, degradation of matrix protein and immune suppression favoring tumor-promoting conditions and initiates multiple signaling cascades augmenting the tumor progression.


Subject(s)
Cell Differentiation , Mouth Neoplasms/pathology , Neoplastic Stem Cells/pathology , Stem Cell Niche , Tumor Microenvironment , Animals , Autophagy , Cell Movement , Cytokines/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Neoplasm Recurrence, Local , Neoplastic Stem Cells/metabolism
15.
Free Radic Biol Med ; 112: 452-463, 2017 11.
Article in English | MEDLINE | ID: mdl-28843778

ABSTRACT

Mitophagy, a special type of autophagy, plays an important role in the mitochondria quality control and cellular homeostasis. In this study, we examined the molecular mechanism of mitophagy induction with benzo[a]pyrene (B[a]P), a ubiquitous polycyclic aromatic hydrocarbon, which acts as a prosurvival response against apoptotic cell death. Our study showed that B[a]P displayed higher cytotoxicity in autophagy-deficient HaCaT cells as compared to control. Further, we showed that B[a]P triggered the Beclin-1-dependent autophagy through the mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. Moreover, our study indicated that the B[a]P-induced autophagy was initiated through the activation of cytochrome P450 1B1 (CYP1B1) and the aryl hydrocarbon receptor (AhR) in HaCaT cells. Intriguingly, the B[a]P-induced Beclin-1-mediated mitophagy was suppressed in CYP1B1 and AhR knockdown HaCaT cells, indicating a crucial role of B[a]P activation in the mitophagy induction to regulate cell death. B[a]P was shown to increase the mitochondrial dysfunction and decrease the mitochondrial membrane potential, resulting in depletion of ATP level along with the inhibition of the oxygen consumption rate in HaCaT cells. Importantly, the supplementation of methyl pyruvate compensated for the B[a]P-induced drop in the ATP level and mitigated the reactive oxygen species burden and autophagy. Mechanistically, B[a]P inhibited the manganese superoxide dismutase (MnSOD) activity and we found that the activated mitochondrial CYP1B1 interacted with MnSOD, inflicting mitophagy to protect from B[a]P-induced apoptosis. In summary, our study reveals mitophagy induction as a cellular protection mechanism against B[a]P-triggered toxicity and carcinogenesis.


Subject(s)
Apoptosis/drug effects , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Keratinocytes/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/biosynthesis , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Cell Line, Transformed , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Dose-Response Relationship, Drug , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy/genetics , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Tumour Biol ; 39(5): 1010428317701634, 2017 May.
Article in English | MEDLINE | ID: mdl-28459216

ABSTRACT

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin-induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44- population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-ß-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3ß inhibitor, rescued the Abrus agglutinin-stimulated inhibition of ß-catenin and phosphorylated glycogen synthase kinase 3ß in FaDu cell-derived orospheres confirming importance of Wnt signaling in Abrus agglutinin-mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate-ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin-mediated caspase-3 activity and ß-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species-mediated apoptosis.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cell Self Renewal/drug effects , Mouth Neoplasms/drug therapy , Plant Lectins/administration & dosage , Animals , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Humans , Hyaluronan Receptors/genetics , Lithium Chloride/administration & dosage , Mice , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Plant Lectins/chemistry , Reactive Oxygen Species/metabolism , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
17.
Free Radic Biol Med ; 104: 199-213, 2017 03.
Article in English | MEDLINE | ID: mdl-28069524

ABSTRACT

Understanding the dynamics of autophagy and apoptosis crosstalk in cancer progression remains a challenging task. Here, we reported how the autophagy protein ATG14 induces lipophagy-mediated mitochondrial apoptosis. The overexpression of ATG14 in HeLa cells inhibited cell viability and increased mitochondrial apoptosis and endoplasmic reticulum (ER) stress. Furthermore, inhibition of this ATG14-induced autophagy promoted apoptosis. ATG14 overexpression resulted in the accumulation of free fatty acids (FFA), with a concomitant decrease in the number of lipid droplets. Our data showed that ER stress induced by ATG14 was due to the lipophagy-mediated FFA accumulation, which resulted in ROS-dependent mitochondrial stress leading to apoptosis. Inhibition of lipophagy in HeLa-ATG14 cells enhanced the cellular viability and rescued them from lipotoxicity. Mechanistically, we found that ATG14 interacted with Ulk1 and LC3, and knock down of Ulk1 prevented the lipidation of LC3 and autophagy in HeLa-ATG14 cells. We also identified a phosphatidylethanolamine (PE) binding region in ATG14, and the addition of Ulk1 to Hela-ATG14 cells decreased the ATG14-PE interaction. Lastly, confocal microscopy studies showed that the decrease in ATG14-PE binding was concomitant with the increase in LC3 lipidation over time, confirming the importance of Ulk1 to sort PE to LC3 during ATG14 mediated lipophagy induction. In conclusion, ATG14 and Ulk1 interact to induce lipophagy resulting in FFA accumulation leading to ER stress-mediated apoptosis.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Microtubule-Associated Proteins/genetics , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Apoptosis/genetics , Autophagy/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/metabolism , Endoplasmic Reticulum Stress/genetics , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/genetics , Mitochondria/pathology , Neoplasms/pathology , Phosphatidylethanolamines/metabolism , Protein Binding , Signal Transduction/drug effects
18.
Mol Carcinog ; 56(2): 389-401, 2017 02.
Article in English | MEDLINE | ID: mdl-27182794

ABSTRACT

Abrus agglutinin (AGG), a type II ribosome-inactivating protein has been found to induce mitochondrial apoptosis. In the present study, we documented that AGG-mediated Akt dephosphorylation led to ER stress resulting the induction of autophagy-dependent cell death through the canonical pathway in cervical cancer cells. Inhibition of autophagic death with 3-methyladenine (3-MA) and siRNA of Beclin-1 and ATG5 increased AGG-induced apoptosis. Further, inhibiting apoptosis by Z-DEVD-FMK and N-acetyl cysteine (NAC) increased autophagic cell death after AGG treatment, suggesting that AGG simultaneously induced autophagic and apoptotic death in HeLa cells. Additionally, it observed that AGG-induced autophagic cell death in Bax knock down (Bax-KD) and 5-FU resistant HeLa cells, confirming as an alternate cell killing pathway to apoptosis. At the molecular level, AGG-induced ER stress in PERK dependent pathway and inhibition of ER stress by salubrinal, eIF2α phosphatase inhibitor as well as siPERK reduced autophagic death in the presence of AGG. Further, our in silico and colocalization study showed that AGG interacted with pleckstrin homology (PH) domain of Akt to suppress its phosphorylation and consequent downstream mTOR dephosphorylation in HeLa cells. We showed that Akt overexpression could not augment GRP78 expression and reduced autophagic cell death by AGG as compared to pcDNA control, indicating Akt modulation was the upstream signal during AGG's ER stress mediated autophagic cell death. In conclusion, we established that AGG stimulated cell death by autophagy might be used as an alternative tumor suppressor mechanism in human cervical cancer. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Plant Lectins/pharmacology , Pleckstrin Homology Domains/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Ribosome Inactivating Proteins, Type 2/pharmacology , Abrus/chemistry , Antineoplastic Agents/isolation & purification , Endoplasmic Reticulum Chaperone BiP , Female , HeLa Cells , Humans , Models, Molecular , Plant Lectins/isolation & purification , Proto-Oncogene Proteins c-akt/chemistry , Ribosome Inactivating Proteins, Type 2/isolation & purification , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , eIF-2 Kinase/metabolism
19.
Toxicol Mech Methods ; 27(1): 1-17, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27919191

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinogens/toxicity , Neoplasms/chemically induced , Phytotherapy/methods , Polycyclic Aromatic Hydrocarbons/toxicity , Carcinogenesis , Cytochrome P-450 Enzyme Inhibitors/therapeutic use , Cytochrome P-450 Enzyme System/biosynthesis , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Plant Preparations/therapeutic use , Receptors, Aryl Hydrocarbon/metabolism
20.
Oral Oncol ; 62: 122-135, 2016 11.
Article in English | MEDLINE | ID: mdl-27865365

ABSTRACT

Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.


Subject(s)
Mouth Neoplasms/pathology , Neoplastic Stem Cells/pathology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Humans , Mouth Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...