Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Microscopy (Oxf) ; 71(2): 98-103, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35018450

ABSTRACT

Comparative measurements between frequency modulation Kelvin probe force microscopy (FM-KPFM) using low frequency bias voltage and heterodyne FM-KPFM using high frequency bias voltage were performed on the surface potential measurement. A silicon substrate patterned with p- and n-type impurities was used as a quantitative sample. The multi-pass scanning method in the measurements of FM-KPFM and heterodyne FM-KPFM was used to eliminate the effect of the tip-sample distance dependence. The measured surface potentials become lower in the order of the p-type region, n-type region and n+-type region by both FM-KPFM and heterodyne FM-KPFM, which are in good agreement with the order of the work functions of the pn-patterned Si sample. We observed the difference in the surface potentials due to the surface band bending measured by FM-KPFM and heterodyne FM-KPFM. The difference is due to the fact that the charge transfer between the surface and bulk levels may or may not respond to AC bias voltage.

2.
Nat Commun ; 12(1): 3865, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162845

ABSTRACT

Three-dimensional (3D) information of the optical response in the nanometre scale is important in the field of nanophotonics science. Using photoinduced force microscopy (PiFM), we can visualize the nano-scale optical field using the optical gradient force between the tip and sample. Here, we demonstrate 3D photoinduced force field visualization around a quantum dot in the single-nanometre spatial resolution with heterodyne frequency modulation technique, using which, the effect of the photothermal expansion of the tip and sample in the ultra-high vacuum condition can be avoided. The obtained 3D mapping shows the spatially localized photoinduced interaction potential and force field vectors in the single nano-scale for composite quantum dots with photocatalytic activity. Furthermore, the spatial resolution of PiFM imaging achieved is ~0.7 nm. The single-nanometer scale photoinduced field visualization is crucial for applications such as photo catalysts, optical functional devices, and optical manipulation.

3.
Ultramicroscopy ; 191: 51-55, 2018 08.
Article in English | MEDLINE | ID: mdl-29803917

ABSTRACT

We investigated a method to obtain a stable contrast mode on the TiO2(110) surface. The stable contrast rate is approximately 95% with a W-coated Si cantilever, which demonstrates that a stable tip apex plays an important role to obtain the real geometry of the surface during atomic force microscopy measurement. Information related to surface structure and tunnelling current on the TiO2(110) surface can be obtained by the W-coated Si cantilever. It is possible to investigate the electronic structure and surface potential on the TiO2(110) surface with atomic resolution. In particular, the proposed method could be widely applied to investigate the catalytic activity and the mechanism of a catalytic reaction by a metal-coated tip in the future.

4.
Nanotechnology ; 29(10): 105504, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29313525

ABSTRACT

We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.

5.
J Phys Condens Matter ; 29(40): 404001, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28731424

ABSTRACT

In magnetic exchange force microscopy, images contain the topographic contrast mixed with the spin contrast on the sample surface. In this study, we propose a new method of magnetic resonance force microscopy using ferromagnetic resonance to extract only the spin contrast. In this method, the magnetization of a magnetic cantilever is modulated by ferromagnetic resonance to separate the spin contrast and topographic contrast. We succeeded in obtaining a spin image of Ni atoms on a NiO (0 0 1) surface. Furthermore, we successfully detected the superexchange interaction between the tip apex atom and the second layer of Ni atoms.

6.
Nanotechnology ; 28(10): 105704, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28164861

ABSTRACT

We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO2(110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.

7.
Nanotechnology ; 27(50): 505704, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27861162

ABSTRACT

We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

8.
Rev Sci Instrum ; 87(9): 093113, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782583

ABSTRACT

The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

9.
Nanotechnology ; 27(20): 205702, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27067038

ABSTRACT

We present an experimental study of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface by noncontact atomic force microscopy (NC-AFM) at 78 K. Ball models of the growth processes of coexisting p(2 × 1)/c(6 × 2) phases on a terrace and near a step are proposed. We found that the p(2 × 1) and c(6 × 2) phases are grown from the super Cu atoms on both sides of O-Cu-O rows of an atomic spacing. In this paper, we summarize our investigations of an oxygen-terminated Cu(110) surface by NC-AFM employing O- and Cu-terminated tips. Also, we state several problems and issues for future investigation.

10.
Nanotechnology ; 26(19): 195701, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25895740

ABSTRACT

We investigated the capability of obtaining atomic resolution surface potential images by frequency-modulation Kelvin probe force microscopy (FM-KPFM) without bias voltage feedback. We theoretically derived equations representing the relationship between the contact potential difference and the frequency shift (Δf) of an oscillating cantilever. For the first time, we obtained atomic resolution images and site-dependent spectroscopic curves for Δf and VLCPD on a Si (111)-7 × 7 surface. FM-KPFM without bias voltage feedback does not involve the influence of the FM-KPFM controller because it has no deviation from a parabolic dependence of Δf on the dc-bias voltage. It is particularly suitable for investigation on molecular electronics and organic photovoltaics, because electron or ion movement induced by dc bias is avoided and the electrochemical reactions are inhibited.

11.
Nanotechnology ; 26(12): 125701, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25736463

ABSTRACT

In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

12.
Microscopy (Oxf) ; 63 Suppl 1: i11, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25359800

ABSTRACT

Techniques to analyze the surface of magnetic memory devices with high spatial resolution are very important to develop today's information technology. The magnetic exchange force is an interaction between spins and is very important for analyzing magnetic properties. Magnetic exchange force microscopy (MExFM), which can detect the magnetic exchange force between the magnetic tip and the magnetic surface, has achieved the atomic-resolution imaging of the spin state on anti-ferromagnetic surface of NiO(001) [1]. In MExFM, however, the separation between a structure and a magnetic state on the surface has not been performed.Here, we propose a new MExFM using ferromagnetic resonance to separate the magnetic and non-magnetic tip-sample interaction. In this method, magnetic tip apex is irradiated by the frequency-modulated microwave with the frequency of ferromagnetic resonance. The magnetization of magnetic tip apex is modulated from on resonance to off resonance. Tip-sample interaction is measured with frequency modulation method. Magnetic images are obtained by detecting the modulation component of the frequency shift of the oscillating cantilever using a lock-in amplifier. Topographic images are obtained by the feedback signal for the constant tip-sample interaction. As a magnetic tip, magnetic cantilever tip coated with FePt with a high coercivity was used to detect the magnetic exchange force without an external magnetic field [2]. We performed imaging on antiferromagnetic material NiO(001) surface (Fig. 1(a)) by MExFM using ferromagnetic resonance. We obtained spin selective image in atomic resolution (Fig. 1(b)). This is the first demonstration of magnetization modulation of the magnetic tip apex using ferromagnetic resonance as well as the separation of the magnetic and non-magnetic tip-sample interaction in MExFM.jmicro;63/suppl_1/i11-a/DFU053F1F1DFU053F1Fig. 1.(a) Structure of NiO(001) surface and (b) its image (phase) obtained with MExFM using ferromagnetic resonance. (4 nm x 4 nm).

13.
Nanotechnology ; 24(22): 225701, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23633495

ABSTRACT

The effect of stray capacitance on potential measurements was investigated using Kelvin probe force microscopy (KPFM) at room temperature under ultra-high vacuum (UHV). The stray capacitance effect was explored in three modes, including frequency modulation (FM), amplitude modulation (AM) and heterodyne amplitude modulation (heterodyne AM). We showed theoretically that the distance-dependence of the modulated electrostatic force in AM-KPFM is significantly weaker than in FM- and heterodyne AM-KPFMs and that the stray capacitance of the cantilever, which seriously influences the potential measurements in AM-KPFM, was almost completely eliminated in FM- and heterodyne AM-KPFMs. We experimentally confirmed that the contact potential difference (CPD) in AM-KPFM, which compensates the electrostatic force between the tip and the surface, was significantly larger than in FM- and heterodyne AM-KPFMs due to the stray capacitance effect. We also compared the atomic scale corrugations in the local contact potential difference (LCPD) among the three modes on the surface of Si(111)-7 × 7 finding that the LCPD corrugation in AM-KPFM was significantly weaker than in FM- and heterodyne AM-KPFMs under low AC bias voltage conditions. The very weak LCPD corrugation in AM-KPFM was attributed to the artefact induced by topographic feedback.

14.
Rev Sci Instrum ; 82(11): 113707, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22128984

ABSTRACT

Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

15.
Ultramicroscopy ; 110(6): 612-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20189307

ABSTRACT

Extension of AFM-based viscoelasticity measurement into a frequency-resolved analysis is attempted. A cantilever immersed into and interacting with distilled water was employed for the trial system. Using a home-built wideband magnetic excitation AFM, a step force with a transient time less than 1micros is applied to the AFM cantilever and its deflection is measured. The 1st and 2nd mode resonance ringing of the cantilever was suppressed using quality-factor-control technique, so that the measurement system becomes equivalent to driving a resonance-free virtual cantilever within the bandwidth limited by the surviving 3rd mode resonance. From the obtained response of the cantilever deflection, a frequency-dependent complex compliance of the cantilever-water system was derived in a frequency range of 1-100kHz. Effect of water confining between the tip and a mica substrate is discussed.

16.
Ultramicroscopy ; 110(6): 582-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20219283

ABSTRACT

We have developed a new technique, called multifrequency high-speed phase-modulation atomic force microscopy (PM-AFM) in constant-amplitude (CA) mode based on the simultaneous excitation of the first two flexural modes of a cantilever. By performing a theoretical investigation, we have found that this technique enables the simultaneous imaging of the surface topography, energy dissipation and elasticity (nonlinear mapping) of materials. We experimentally demonstrated high-speed imaging at a scan speed of 5 frames/s for a polystyrene (PS) and polyisobutylene (PIB) polymer-blend thin-film surface in water.

17.
Nanotechnology ; 20(26): 264011, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19509444

ABSTRACT

A sharp probe tip with atomic scale stability is essential and desirable for noncontact atomic force microscopy (NC-AFM) studies at the atomic scale. We observed a Ge(001) surface using both a Si cantilever and a tungsten coated Si cantilever at room temperature in order to investigate the influence of the tip apex structure on the NC-AFM images. By using the Si cantilever, we first obtained four types of image at the atomic scale which can be explained assuming a dimer structure on the tip apex. On the other hand, the home-made tungsten coated tip, which has atomic scale stability and high electric conductivity, imaged the so-called ordered c(4 x 2) structure without any artifacts. The tungsten coated cantilever was found to have significantly higher performance for NC-AFM studies at the atomic scale than the Si cantilever.

18.
Rev Sci Instrum ; 80(2): 023705, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19256651

ABSTRACT

In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.


Subject(s)
Computer-Aided Design , Hardness Tests/instrumentation , Magnetics/instrumentation , Materials Testing/instrumentation , Microscopy, Atomic Force/instrumentation , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Microscopy, Atomic Force/methods , Reproducibility of Results , Sensitivity and Specificity , Viscosity
19.
Chem Commun (Camb) ; (8): 825-7, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17308644

ABSTRACT

The cross-coupling of Grignard reagents with alkyl bromides and tosylates has been achieved by the use of eta(3)-allylnickel and eta(3)-allylpalladium complexes as catalysts.

20.
Chem Commun (Camb) ; (8): 855-7, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17308654

ABSTRACT

A simple method for the conversion of (sp(3))C-F bonds of alkyl fluorides to (sp(3))C-X (X = Cl, C, H, O, S, Se, Te, N) bonds has been achieved by the use of a hexane solution of organoaluminum reagents having Al-X bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...