Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 19(5): 2208-2210, 2023 05.
Article in English | MEDLINE | ID: mdl-36583449

ABSTRACT

MGMT, the gene coding for the DNA-repair protein O6 -methylguanine methyltransferase, which has been recently shown to be a risk factor for inherited forms of Alzheimer's disease (AD), notably among women, might also be linked to Western Pacific amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC), one phenotype of which is an AD-like dementia. Guam ALS/PDC is strongly considered to be an environmental disorder caused by oral exposure to natural toxins (i.e., genotoxic/epigenotoxic chemicals), notably methylazoxymethanol (MAM) that alkylates guanine to form O6 -methylguanine, found in the seed of cycad plants traditionally used for food. Thus, the DNA-repair protein MGMT might participate in both AD and in the AD-related disorder ALS/PDC.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Parkinsonian Disorders , Female , Humans , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , DNA , DNA Modification Methylases , DNA Repair Enzymes/genetics , Parkinsonian Disorders/epidemiology , Parkinsonian Disorders/genetics , Risk Factors , Tumor Suppressor Proteins
2.
Cogent Biol ; 52019.
Article in English | MEDLINE | ID: mdl-31440524

ABSTRACT

Acetaldehyde is a physiological species existing in blood. Glyceraldehyde is a commonly-used surrogate for glucose in studies of nonenzymatic glycation. Both species exist in dynamic equilibrium between two forms, an aldehyde and a hydrate. Nonenzymatic covalent protein modification (NECPM) is a process whereby a protein is covalently modified by a non-glucose species. The purpose here was to elucidate the NECPM mechanism(s) for acetaldehyde and glyceraldehyde with human hemoglobin (HbA). For the first time, both aldehydic and hydrate forms of acetaldehyde and glyceraldehyde were considered. Computations and model reactions followed by 1H NMR were employed. Results demonstrated that the aldehyde and hydrate forms of acetaldehyde bind and covalently-modify Val1 of HbA via different chemical mechanisms, yet generated an identical protonated Schiff base (PSB). The aldehyde and hydrate of glyceraldehyde also covalently-modified Val1 via mechanisms distinct from one another, yet generated an identical PSB. It is noteworthy that the PSB from acetaldehyde and glyceraldehyde were different structures. The PSB from acetaldehyde is proposed to proceed to covalent adducts that have been implicated in alcohol toxicity. Conversely, the PSB generated from glyceraldehyde can form an Amadori which has been implicated in diabetic complications. Thus, the PSB structure generated from acetaldehyde versus glyceraldehyde may be central to pathophysiological outcomes because it determines the structure of the stable covalent adduct formed.

SELECTION OF CITATIONS
SEARCH DETAIL
...