Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Biosci Bioeng ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851988

ABSTRACT

Respiratory syncytial virus (RSV) infection is an acute respiratory infection caused by RSV. It occurs worldwide, and for over 50 years, several attempts have been made to research and develop vaccines to prevent RSV infection; effective preventive vaccines are eagerly awaited. The RSV fusion (F) protein, which has gained attention as a vaccine antigen, causes a dynamic structural change from the preF to postF state. Therefore, the structural changes in proteins must be regulated to produce a vaccine antigen that can efficiently induce antibodies with high virus-neutralizing activity. We successfully discovered several mutations that stabilized the antigen site Ø in the preF state, trimerized it, and improved the level of protein expression through observation and computational analysis of the RSV-F protein structure and amino acid mutation analysis of RSV strains. The four RSV-F protein mutants that resulted from the combination of these effective mutations stably conserved a wide range of preF- and trimeric preF-specific epitopes with high virus-neutralizing activity. Absorption assay using human serum revealed that mutants constructed bound to antibodies with virus-neutralizing activity that were induced by natural RSV infection, whereas they hardly bound to anti-postF antibodies without virus-neutralizing activity. Furthermore, mouse immunization demonstrated that our constructed mutants induced a high percentage of antibodies that bind to the preF-specific antigen site. These characteristics suggest that the mutants constructed can be superior vaccine antigens from the viewpoint of RSV infection prevention effect and safety.

2.
Bioorg Med Chem Lett ; 109: 129848, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876176

ABSTRACT

We explored novel immunosuppressive agents with immune tolerance using a phenotypic drug discovery strategy, focusing on costimulatory molecules in T cells, and obtained triazolothienodiazepine derivatives. Their mechanism of action is to inhibit the bromodomain and extra-terminal domain (BET) family, as we have previously reported. Selective inhibition of the first bromodomain (BD1) of the BET family is expected to exert antitumor and immunosuppressive effects, similar to BET inhibitors. This study identified furopyridine derivatives 7 and 8 with high BD1 inhibitory activity and high selectivity over BD2. Compound 7 was found to be orally bioavailable and exhibited anti-inflammatory activity in a lipopolysaccharide-induced model.

3.
Bioorg Med Chem Lett ; 109: 129849, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876177

ABSTRACT

Clinical studies have shown that inhibitors of bromodomain and extra-terminal domain (BET) proteins, particularly BRD4, have antitumor activity and efficacy. The BET protein has two domains, BD1 and BD2, and we previously focused on BD1 and reported orally bioavailable BD1-selective inhibitors. In this study, we obtained a BD1 inhibitor, a more potent and highly selective pyrazolopyridone derivative 13a, and confirmed its in vivo efficacy.

4.
Cryst Growth Des ; 24(8): 3205-3217, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659664

ABSTRACT

The formulation of active pharmaceutical ingredients involves discovering stable crystal packing arrangements or polymorphs, each of which has distinct pharmaceutically relevant properties. Traditional experimental screening techniques utilizing various conditions are commonly supplemented with in silico crystal structure prediction (CSP) to inform the crystallization process and mitigate risk. Predictions are often based on advanced classical force fields or quantum mechanical calculations that model the crystal potential energy landscape but do not fully incorporate temperature, pressure, or solution conditions during the search procedure. This study proposes an innovative alchemical path that utilizes an advanced polarizable atomic multipole force field to predict crystal structures based on direct sampling of the NPT ensemble. The use of alchemical (i.e., nonphysical) intermediates, a novel Monte Carlo barostat, and an orthogonal space tempering bias combine to enhance the sampling efficiency of the deposition/sublimation phase transition. The proposed algorithm was applied to 2-((4-(2-(3,4-dichlorophenyl)ethyl)phenyl)amino)benzoic acid (Cambridge Crystallography Database Centre ID: XAFPAY) as a case study to showcase the algorithm. Each experimentally determined polymorph with one molecule in the asymmetric unit was successfully reproduced via approximately 1000 short 1 ns simulations per space group where each simulation was initiated from random rigid body coordinates and unit cell parameters. Utilizing two threads of a recent Intel CPU (a Xeon Gold 6330 CPU at 2.00 GHz), 1 ns of sampling using the polarizable AMOEBA force field can be acquired in 4 h (equating to more than 300 ns/day using all 112 threads/56 cores of a dual CPU node) within the Force Field X software (https://ffx.biochem.uiowa.edu). These results demonstrate a step forward in the rigorous use of the NPT ensemble during the CSP search process and open the door to future algorithms that incorporate solution conditions using continuum solvation methods.

5.
J Appl Crystallogr ; 55(Pt 6): 1528-1537, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36570662

ABSTRACT

During in silico crystal structure prediction of organic molecules, millions of candidate structures are often generated. These candidates must be compared to remove duplicates prior to further analysis (e.g. optimization with electronic structure methods) and ultimately compared with structures determined experimentally. The agreement of predicted and experimental structures forms the basis of evaluating the results from the Cambridge Crystallographic Data Centre (CCDC) blind assessment of crystal structure prediction, which further motivates the pursuit of rigorous alignments. Evaluating crystal structure packings using coordinate root-mean-square deviation (RMSD) for N molecules (or N asymmetric units) in a reproducible manner requires metrics to describe the shape of the compared molecular clusters to account for alternative approaches used to prioritize selection of molecules. Described here is a flexible algorithm called Progressive Alignment of Crystals (PAC) to evaluate crystal packing similarity using coordinate RMSD and introducing the radius of gyration (R g) as a metric to quantify the shape of the superimposed clusters. It is shown that the absence of metrics to describe cluster shape adds ambiguity to the results of the CCDC blind assessments because it is not possible to determine whether the superposition algorithm has prioritized tightly packed molecular clusters (i.e. to minimize R g) or prioritized reduced RMSD (i.e. via possibly elongated clusters with relatively larger R g). For example, it is shown that when the PAC algorithm described here uses single linkage to prioritize molecules for inclusion in the superimposed clusters, the results are nearly identical to those calculated by the widely used program COMPACK. However, the lower R g values obtained by the use of average linkage are favored for molecule prioritization because the resulting RMSDs more equally reflect the importance of packing along each dimension. It is shown that the PAC algorithm is faster than COMPACK when using a single process and its utility for biomolecular crystals is demonstrated. Finally, parallel scaling up to 64 processes in the open-source code Force Field X is presented.

6.
J Med Chem ; 65(6): 5072-5084, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35275623

ABSTRACT

Despite the notoriously poor membrane permeability of peptides, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of "undruggable" intracellular targets. A major impediment to the design of cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. While several strategies have been proposed to mitigate this deleterious effect, only few studies have used polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinylglutamine (Pye), whose side chain contains a powerful hydrogen-bond-accepting C═O amide group but no hydrogen-bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Therefore, this approach offers a complementary tool for improving membrane permeability and solubility in cyclic peptides.


Subject(s)
Amino Acids , Peptides, Cyclic , Amides , Hydrogen Bonding , Peptides, Cyclic/chemistry , Permeability , Solubility
7.
J Chem Inf Model ; 61(11): 5601-5613, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34672629

ABSTRACT

The chameleonic behavior of cyclosporin A (CsA) was investigated through conformational ensembles employing multicanonical molecular dynamics simulations that could sample the cis and trans isomers of N-methylated amino acids; these assessments were conducted in explicit water, dimethyl sulfoxide, acetonitrile, methanol, chloroform, cyclohexane (CHX), and n-hexane (HEX) using AMBER ff03, AMBER10:EHT, AMBER12:EHT, and AMBER14:EHT force fields. The conformational details were discussed employing the free-energy landscapes (FELs) at T = 300 K; it was observed that the experimentally determined structures of CsA were only a part of the conformational space. Comparing the ROESY measurements in CHX-d12 and HEX-d14, the major conformations in those apolar solvents were essentially the same as that in CDCl3 except for the observation of some sidechain rotamers. The effects of the metal ions on the conformations, including the cis/trans isomerization, were also investigated. Based on the analysis of FELs, it was concluded that the AMBER ff03 force field best described the experimentally derived conformations, indicating that CsA intrinsically formed membrane-permeable conformations and that the metal ions might be the key to the cis/trans isomerization of N-methylated amino acids before binding a partner protein.


Subject(s)
Cyclosporine , Molecular Dynamics Simulation , Molecular Conformation , Protein Conformation , Solvents , Water
8.
ACS Chem Biol ; 16(8): 1354-1364, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34251165

ABSTRACT

Cordyheptapeptide A is a lipophilic cyclic peptide from the prized Cordyceps fungal genus that shows potent cytotoxicity in multiple cancer cell lines. To better understand the bioactivity and physicochemical properties of cordyheptapeptide A with the ultimate goal of identifying its cellular target, we developed a solid-phase synthesis of this multiply N-methylated cyclic heptapeptide which enabled rapid access to both side chain- and backbone-modified derivatives. Removal of one of the backbone amide N-methyl (N-Me) groups maintained bioactivity, while membrane permeability was also preserved due to the formation of a new intramolecular hydrogen bond in a low dielectric solvent. Based on its cytotoxicity profile in the NCI-60 cell line panel, as well as its phenotype in a microscopy-based cytological assay, we hypothesized that cordyheptapeptide was acting on cells as a protein synthesis inhibitor. Further studies revealed the molecular target of cordyheptapeptide A to be the eukaryotic translation elongation factor 1A (eEF1A), a target shared by other lipophilic cyclic peptide natural products. This work offers a strategy to study and improve cyclic peptide natural products while highlighting the ability of these lipophilic compounds to effectively inhibit intracellular disease targets.


Subject(s)
Antineoplastic Agents/pharmacology , Peptide Elongation Factor 1/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Protein Synthesis Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Humans , Molecular Structure , Peptides, Cyclic/chemical synthesis , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemical synthesis , Solid-Phase Synthesis Techniques , Structure-Activity Relationship
9.
Angew Chem Int Ed Engl ; 59(48): 21571-21577, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32789999

ABSTRACT

Large macrocyclic peptides can achieve surprisingly high membrane permeability, although the properties that govern permeability in this chemical space are only beginning to come into focus. We generated two libraries of cyclic decapeptides with stable cross-ß conformations, and found that peptoid substitutions within the ß-turns of the macrocycle preserved the rigidity of the parent scaffold, whereas peptoid substitutions in the opposing ß-strands led to "chameleonic" species that were rigid in nonpolar media but highly flexible in water. Both rigid and chameleonic compounds showed high permeability over a wide lipophilicity range, with peak permeabilities differing significantly depending on scaffold rigidity. Our findings indicate that modulating lipophilicity can be used to engineer favorable ADME properties into both rigid and flexible macrocyclic peptides, and that scaffold rigidity can be used to tune optimal lipophilicity.


Subject(s)
Macrocyclic Compounds/chemistry , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Macrocyclic Compounds/chemical synthesis , Molecular Structure , Molecular Weight , Peptides/chemical synthesis
10.
ACS Med Chem Lett ; 11(7): 1416-1420, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32676148

ABSTRACT

Inhibition of hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) promotes erythropoietin (EPO) production by stabilizing the HIFα subunit. Thieno[2,3-d]pyrimidine 8 identified based on X-ray crystal structure analysis was optimized to lead to the discovery of pyrazolo[4,3-d]pyrimidine 13 as the lead compound of orally bioavailable HIF-PHD inhibitors. Conversion of the benzyl moiety in 13 gave pyrazolopyrimidine 19 with high solubility and bioavailability, which increased hemoglobin levels in anemic model rats after repeated oral administration. It was shown that pyrazolo[4,3-d]pyrimidine derivatives are promising therapeutic agents for renal anemia through the inhibition of HIF-PHD.

11.
J Chem Inf Model ; 59(6): 2952-2963, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31042375

ABSTRACT

Conformational ensembles of eight cyclic hexapeptide diastereomers in explicit cyclohexane, chloroform, and water were analyzed by multicanonical molecular dynamics (McMD) simulations. Free-energy landscapes (FELs) for each compound and solvent were obtained from the molecular shapes and principal component analysis at T = 300 K; detailed analysis of the conformational ensembles and flexibility of the FELs revealed that permeable compounds have different structural profiles even for a single stereoisomeric change. The average solvent-accessible surface area (SASA) in cyclohexane showed excellent correlation with the cell permeability, whereas this correlation was weaker in chloroform. The average SASA in water correlated with the aqueous solubility. The average polar surface area did not correlate with cell permeability in these solvents. A possible strategy for designing permeable cyclic peptides from FELs obtained from McMD simulations is proposed.


Subject(s)
Cell Membrane Permeability , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Conformation , Stereoisomerism , Thermodynamics
12.
Biophys Chem ; 180-181: 119-26, 2013.
Article in English | MEDLINE | ID: mdl-23938954

ABSTRACT

Accurate methods to predict the binding affinities of compounds for target molecules are powerful tools in structure-based drug design (SBDD). A recently developed method called massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) successfully predicted the binding affinities of compounds with relatively similar scaffolds. We investigate the applicability of MP-CAFEE for predicting the affinity of compounds having more diverse scaffolds for the target p38α, a mitogen-activated protein kinase. The calculated and experimental binding affinities correlate well, showing that MP-CAFEE can accurately rank the compounds with diverse scaffolds. We propose a method to determine the optimal number of sampling runs with respect to a predefined level of accuracy, which is established according to the stage in the SBDD process being considered. The optimal number of sampling runs for two key stages-lead identification and lead optimization-is estimated to be five and eight or more, respectively, in our model system using Cochrans sample size formula.


Subject(s)
Mitogen-Activated Protein Kinase 14/chemistry , Software , Databases, Protein , Drug Design , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Thermodynamics , Water/chemistry
13.
Biophys Chem ; 162: 35-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22284903

ABSTRACT

The gating of ion channel of ionotropic glutamate receptors is controlled by the structural change of the ligand-binding domain of GluR2. We examined the roles of residues in the glutamate-binding and cleft-closing mechanisms by molecular dynamics (MD) simulations. A glutamate entered the cleft deeply within the order of nanoseconds and the cleft locked the glutamate completely at 15 ns in an MD run. TYR450 seemed to regulate the orientation of the glutamate upon binding by cation-π interaction. A semi-open state was identified in the free energy profile evaluated with the structures on the spontaneously glutamate-bound and cleft-closed pathway by the unbiased MD simulations for the first time to our knowledge. In the semi-open state, the two sub-domains were bridged by two hydrogen bonds of GLU705 in the sub-domain 2 with TYR732 in the sub-domain 1 and with the glutamate bound to the sub-domain 1 until the transition to the closed state.


Subject(s)
Glutamic Acid/metabolism , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Rats , Thermodynamics
14.
Biophys Chem ; 141(1): 75-86, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19176270

ABSTRACT

Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament.


Subject(s)
Adenosine Triphosphate/metabolism , Dictyostelium , Models, Molecular , Myosins/chemistry , Myosins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Animals , Carbon , Hydrolysis , Protein Conformation , Protein Structure, Tertiary , Temperature , Time Factors
15.
Proteins ; 64(2): 502-12, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16705641

ABSTRACT

X-ray crystallography has revealed two similar alpha/beta domains of the aspartate racemase from the hyperthermophilic archaeon, Pyrococcus horikoshii OT3. The active site is located in the cleft between the two domains where two cysteine residues face each other. This arrangement allows the substrate to enter the cleft and enables the two cysteine residues to act synergistically. However, the distance between their thiolates was estimated to be 9.6 angstroms, which is beyond the distance for cooperative action of them. We examined the molecular mechanism for the racemization reaction of this hyperthermophilic aspartate racemase by mutational analyses and molecular dynamics simulations. The mutational analyses revealed that Arg48 and Lys164 were essential for catalysis in addition to the putative catalytic cysteine residues. The molecular dynamics simulations revealed that the distance between the two active gamma-sulfur atoms of cysteine residues oscillate to periodically become shorter than the predicted cooperative distance at high temperature. In addition, the conformation of Tyr160, which is located at the entrance of the cleft and inhibits the entry of a substrate, changes periodically to open the entrance at 375 K. The opening of the gate is likely to be induced by the motion of the adjacent amino acid, Lys164. The entrance of an aspartate molecule was observed by molecular dynamics (MD) simulations driven by the force of the electrostatic interaction with Arg48, Lys164, and also Asp47. These results provide insights into the roles of amino acid residues at the catalytic site and also the activation mechanism of a hyperthermophilic aspartate racemase at high temperature.


Subject(s)
Amino Acid Isomerases/chemistry , Arginine/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Kinetics , Lysine/chemistry , Models, Molecular , Plasmids/metabolism , Protein Conformation , Pyrococcus horikoshii/enzymology , Static Electricity , Temperature
16.
Biophys Chem ; 115(1): 77-85, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15848287

ABSTRACT

A crucial point for mechanical force generation in actomyosin systems is how the energy released by ATP hydrolysis in the myosin motor domain gives rise to the movement of the myosin head along the actin filament. We assumed the signal of the ATP hydrolysis to be transmitted as modulated atomic vibrations from the nucleotide-binding site throughout the myosin head, and carried out 1-ns all-atom molecular dynamics simulations for that signal transmission. We distributed the released energy to atoms located around the ATPase pocket as kinetic energies and examined how the effect of disturbance extended throughout the motor domain. The result showed that the disturbance signal extended over the motor domain in 150 ps and induced slowly varying collective motions of atoms at the actin-binding site and the junction with the neck, both of which are relevant to the movement of the myosin head along the actin filament. We also performed a principal component analysis of thermal atomic motions for the motor domain, and the first principal component was consistent with the response to the disturbance given to the ATPase pocket.


Subject(s)
Adenosine Triphosphatases/chemistry , Computer Simulation , Molecular Motor Proteins/chemistry , Myosins/chemistry , Binding Sites/physiology , Models, Molecular , Motion , Protein Structure, Tertiary/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...