Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pathol Lab Med ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041522

ABSTRACT

CONTEXT.­: Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology. OBJECTIVE.­: To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation. DATA SOURCES.­: An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks. CONCLUSIONS.­: Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.

2.
J Pathol Inform ; 13: 100142, 2022.
Article in English | MEDLINE | ID: mdl-36605116

ABSTRACT

Several machine learning algorithms have demonstrated high predictive capability in the identification of cancer within digitized pathology slides. The Augmented Reality Microscope (ARM) has allowed these algorithms to be seamlessly integrated within the pathology workflow by overlaying their inferences onto its microscopic field of view in real time. We present an independent assessment of the LYmph Node Assistant (LYNA) models, state-of-the-art algorithms for the identification of breast cancer metastases in lymph node biopsies, optimized for usage on the ARM. We assessed the models on 40 whole slide images at the commonly used objective magnifications of 10×, 20×, and 40×. We analyzed their performance across clinically relevant subclasses of tissue, including breast cancer, lymphocytes, histiocytes, blood, and fat. Each model obtained overall AUC values of approximately 0.98, accuracy values of approximately 0.94, and sensitivity values above 0.88 at classifying small regions of a field of view as benign or cancerous. Across tissue subclasses, the models performed most accurately on fat and blood, and least accurately on histiocytes, germinal centers, and sinus. The models also struggled with the identification of isolated tumor cells, especially at lower magnifications. After testing, we reviewed the discrepancies between model predictions and ground truth to understand the causes of error. We introduce a distinction between proper and improper ground truth for analysis in cases of uncertain annotations. Taken together, these methods comprise a novel approach for exploratory model analysis over complex anatomic pathology data in which precise ground truth is difficult to establish.

3.
Mil Med ; 186(11-12): 1254-1256, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33826724

ABSTRACT

We describe a patient with subclinical coccidioidomycosis who experienced rapid disease dissemination shortly after SARS-CoV-2 infection, suggesting host immune response dysregulation to coccidioidomycosis by SARS-CoV-2. We hypothesize that disrupted cell-mediated signaling may result after SARS-CoV-2 infection leading to functional exhaustion and CD8+ T-cell senescence with impairment in host cellular response to Coccidioides infection.


Subject(s)
COVID-19 , Coccidioidomycosis , Coccidioides , Coccidioidomycosis/complications , Coccidioidomycosis/diagnosis , Humans , SARS-CoV-2
4.
Arch Pathol Lab Med ; 145(10): 1228-1254, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33493264

ABSTRACT

CONTEXT.­: Recent developments in machine learning have stimulated intense interest in software that may augment or replace human experts. Machine learning may impact pathology practice by offering new capabilities in analysis, interpretation, and outcomes prediction using images and other data. The principles of operation and management of machine learning systems are unfamiliar to pathologists, who anticipate a need for additional education to be effective as expert users and managers of the new tools. OBJECTIVE.­: To provide a background on machine learning for practicing pathologists, including an overview of algorithms, model development, and performance evaluation; to examine the current status of machine learning in pathology and consider possible roles and requirements for pathologists in local deployment and management of machine learning systems; and to highlight existing challenges and gaps in deployment methodology and regulation. DATA SOURCES.­: Sources include the biomedical and engineering literature, white papers from professional organizations, government reports, electronic resources, and authors' experience in machine learning. References were chosen when possible for accessibility to practicing pathologists without specialized training in mathematics, statistics, or software development. CONCLUSIONS.­: Machine learning offers an array of techniques that in recent published results show substantial promise. Data suggest that human experts working with machine learning tools outperform humans or machines separately, but the optimal form for this combination in pathology has not been established. Significant questions related to the generalizability of machine learning systems, local site verification, and performance monitoring remain to be resolved before a consensus on best practices and a regulatory environment can be established.


Subject(s)
Artificial Intelligence , Machine Learning , Pathologists/education , Pathology/methods , Algorithms , Female , Humans , Male , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...