Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
J Headache Pain ; 25(1): 75, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724972

ABSTRACT

BACKGROUND: GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS: Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS: Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION: Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.


Subject(s)
Migraine Disorders , Phenotype , Rats, Wistar , Receptors, GABA-A , Animals , Migraine Disorders/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/physiopathology , Rats , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Male , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Epilepsy, Absence/drug therapy , Epilepsy, Absence/physiopathology , Nitroglycerin/pharmacology , Nitroglycerin/toxicity , Photophobia/etiology , Photophobia/physiopathology
3.
Epilepsia Open ; 9(2): 534-547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38071480

ABSTRACT

OBJECTIVE: The objective of the study was to propose a candidate animal model of absence status epilepticus induced by specific alpha-2a adrenergic receptor (α2AR) activation. We also aim to investigate the responsiveness of this model to classical anti-status or anti-absence medications. METHODS: An α2AR agonist, dexmedetomidine (DEX), was injected intracerebroventricularly into adult rats with genetic absence epilepsy, and their electroencephalography (EEG) was recorded. The total duration, number, and mean duration of each spike-and-wave discharges (SWDs) were evaluated. The blocks of absence status events were classified as the initial and second sets of absence statuses. Ethosuximide (ETX) was administered as a pretreatment to another group of rats and later injected with 2.5 µg DEX. In addition, ETX, valproic acid (VPA), diazepam (DIAZ), and atipamezole (ATI) were administered after induced status-like events following DEX administration. Power spectral characteristics and coherence analysis were performed on the EEG to assess the absence status events and sleep. RESULTS: The 2.5 µg dose of DEX increased the total SWD duration and induced continuous SWDs up to 26 min. Following the initial absence status event, sleep was induced; then, the second period of absence status-like activities were initiated. ETX pretreatment blocked the occurrence of absence status-like activities. Power spectral density analyses revealed that DEX-induced post-sleep activities had higher power in delta frequency band (1-4 Hz) and attenuated power of 7 Hz harmonics (14 and 21 Hz) than the pre-injection seizure. The mean duration of SWDs were decreased in all the groups, but occasional prolonged activities were seen in ETX or VPA-injected rats but not with DIAZ or ATI. SIGNIFICANCE: This study presents an absence status epilepticus animal model that is activated by α2AR activation to investigate the pathophysiological role of absence status. Unlike other agents ATI switched off the second set of absence statuses to normal SWDs, without sedation or lethargy, can show it may preferentially block absence status-like activity. THE PLAIN LANGUAGE SUMMARY: This study proposes a rat model for prolonged seizures, resembling absence status epilepticus. Activating the brain's alpha-2a adrenergic receptor with dexmedetomidine induced seizures lasting up to 26 minutes. Ethosuximide pretreatment and post-treatment with valproic acid, diazepam, and atipamezole decreased induced seizures. The findings suggest this model is valuable for studying absence status epilepticus. In addition, atipamezole normalized abnormal seizures without sedation, hinting at its potential for targeted treatment and further research.


Subject(s)
Dexmedetomidine , Epilepsy, Absence , Status Epilepticus , Animals , Rats , Diazepam/adverse effects , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Ethosuximide , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, alpha-2/therapeutic use , Seizures/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Valproic Acid
4.
J Gynecol Obstet Hum Reprod ; 53(1): 102693, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984519

ABSTRACT

INTRODUCTION: Favipiravir has gained attention during the Coronavirus Disease-2019 pandemic due to its potential antiviral effect against Severe Acute Respiratory Syndrome Coronavirus-2. Favipiravir has been identified as a teratogen in animal studies, but there is limited human data. We aimed to evaluate the pregnancy outcomes of women exposed to favipiravir during the pandemic. MATERIAL AND METHODS: Pregnant women who were exposed to favipiravir and applied to Marmara University School of Medicine Medical Pharmacology Outpatient Clinic Teratology Information Service between December 2020-September 2021 are included in the study. The demographic information, medical and obstetric histories of patients were acquired during admission, the outcomes of the pregnancies and the characteristics of the infants were gathered by regular phone calls. The infants whose parents consented were evaluated by a pediatrician for general well-being and congenital anomalies. RESULTS: 22 pregnant women were included in this study. 81.8 % received the recommended favipiravir dose (8000 mg in 5 days), in the first trimester. Two patients were lost to follow-up, there was one elective termination and 19 live births. Congenital anomalies were found in 2 infants, one of whom had 9q34 duplication syndrome. Except for these, all newborns examined by the pediatrician were healthy. DISCUSSION: Within a limited case series, a subset of the infants exposed to favipiravir prenatally were followed up to 1 year of age. Two infants exhibited congenital malformations that cannot be directly linked to favipiravir due to confounding variables. Considering the limited data published, favipiravir does not appear to be a major teratogen.


Subject(s)
Amides , COVID-19 , Pyrazines , Teratogens , Humans , Pregnancy , Female , Infant, Newborn , Turkey , Pregnancy Outcome
5.
Front Neurol ; 14: 1282494, 2023.
Article in English | MEDLINE | ID: mdl-38107640

ABSTRACT

Introduction: Orexin is a neuropeptide neurotransmitter that regulates the sleep/wake cycle produced by the lateral hypothalamus neurons. Recent studies have shown the involvement of orexin system in epilepsy. Limited data is available about the possible role of orexins in the pathophysiology of absence seizures. This study aims to understand the role of orexinergic signaling through the orexin-type 2 receptor (OX2R) in the pathophysiology of absence epilepsy. The pharmacological effect of a selective OX2R agonist, YNT-185 on spike-and-wave-discharges (SWDs) and the OX2R receptor protein levels in the cortex and thalamus in adult GAERS were investigated. Methods: The effect of intracerebroventricular (ICV) (100, 300, and 600 nmol/10 µL), intrathalamic (30 and 40 nmol/500 nL), and intracortical (40 nmol/500 nL) microinjections of YNT-185 on the duration and number of spontaneous SWDs were evaluated in adult GAERS. The percentage of slow-wave sleep (SWS) and spectral characteristics of background EEG were analyzed after the ICV application of 600 nmol YNT-185. The level of OX2R expression in the somatosensory cortex and projecting thalamic nuclei of adult GAERS were examined by Western blot and compared with the non-epileptic Wistar rats. Results: We showed that ICV administration of YNT-185 suppressed the cumulative duration of SWDs in GAERS compared to the saline-administered control group (p < 0.05). However, intrathalamic and intracortical microinjections of YNT-185 did not show a significant effect on SWDs. ICV microinjections of YNT-185 affect sleep states by increasing the percentage of SWS and showed a significant treatment effect on the 1-4 Hz delta frequency band power during the 1-2 h post-injection period where YNT-185 significantly decreased the SWDs. OXR2 protein levels were significantly reduced in the cortex and thalamus of GAERS when compared to Wistar rats. Conclusion: This study investigated the efficacy of YNT-185 for the first time on absence epilepsy in GAERS and revealed a suppressive effect of OX2R agonist on SWDs as evidenced by the significantly reduced expression of OX2R in the cortex and thalamus. YNT-185 effect on SWDs could be attributed to its regulation of wake/sleep states. The results constitute a step toward understanding the effectiveness of orexin neuropeptides on absence seizures in GAERS and might be targeted by therapeutic intervention for absence epilepsy.

6.
Front Neurol ; 14: 1231736, 2023.
Article in English | MEDLINE | ID: mdl-38146441

ABSTRACT

Introduction: The genetic absence epilepsy rat from Strasbourg (GAERS) is a rat model for infantile absence epilepsy with spike-and-wave discharges (SWDs). This study aimed to investigate the potential of alpha 2A agonism to induce seizures during the pre-epileptic period in GAERS rats. Methods: Stereotaxic surgery was performed on male pups and adult GAERS rats to implant recording electrodes in the frontoparietal cortices (right/left) under anesthesia (PN23-26). Following the recovery period, pup GAERS rats were subjected to electroencephalography (EEG) recordings for 2 h. Before the injections, pup epileptiform activity was examined using baseline EEG data. Dexmedetomidine was acutely administered at 0.6 mg/kg to pup GAERS rats 2-3 days after the surgery and once during the post-natal (PN) days 25-29. Epileptiform activities before injections triggered unilateral SWDs and induced sleep durations, and power spectral density was evaluated based on EEG traces. Results: The most prominent finding of this study is that unilateral SWD-like activities were induced in 47% of the animals with the intraperitoneal dexmedetomidine injection. The baseline EEGs of pup GAERS rats had no SWDs as expected since they are in the pre-epileptic period but showed low-amplitude non-rhythmic epileptiform activity. There was no difference in the duration of epileptiform activities between the basal EEG groups and DEX-injected unilateral SWD-like-exhibiting and non-SWD-like activities groups; however, the sleep duration of the unilateral SWD-like-exhibiting group was shorter. Power spectrum density (PSD) results revealed that the 1.75-Hz power in the left hemisphere peaks significantly higher than in the right. Discussion: As anticipated, pup GAERS rats in the pre-epileptic stage showed no SWDs. Nevertheless, they exhibited sporadic epileptiform activities. Specifically, dexmedetomidine induced SWD-like activities solely within the left hemisphere. These observations imply that absence seizures might originate unilaterally in the left cortex due to α2AAR agonism. Additional research is necessary to explore the precise cortical focal point of this activity.

7.
Front Immunol ; 14: 1268986, 2023.
Article in English | MEDLINE | ID: mdl-38035091

ABSTRACT

Objective: Autoimmune encephalitis (AE) is a distinct neuro-immunological disorder associated with the production of autoantibodies against neuronal proteins responsible for pharmacoresistant seizures, cognitive decline and behavioral problems. To establish the causal link between leucine-rich glioma inactivated 1 (LGI1) antibody and seizures, we developed an in-vivo antibody-mediated AE rat model in which serum antibodies (IgG) obtained from blood samples of leucine-rich glioma inactivated 1 (LGI1) protein antibody (IgG) positive encephalitis patients were passively transferred into non-epileptic Wistar rats. Serum IgG of N-methyl-d-aspartate receptor (NMDAR) antibody positive patients were used as positive control since the pathogenicity of this antibody has been previously shown in animal models. Methods: Total IgG obtained from the pooled sera of NMDAR and LGI1-IgG positive patients with epileptic seizures and healthy subjects was applied chronically every other day for 11 days into the cerebral lateral ventricle. Spontaneous seizure development was followed by electroencephalography. Behavioral tests for memory and locomotor activity were applied before and after the antibody infusions. Then, pentylenetetrazol (PTZ) was administered intraperitoneally to evaluate seizure susceptibility. Immunohistochemistry processed for assessment of hippocampal astrocyte proliferation and expression intensity of target NMDAR and LGI1 antigens. Results: No spontaneous activity was observed during the antibody infusions. PTZ-induced seizure stage was significantly higher in the NMDAR-IgG and LGI1-IgG groups compared to control. Besides, memory deficits were observed in the NMDAR and LGI1-IgG groups. We observed enhanced astrocyte proliferation in NMDAR- and LGI1-IgG groups and reduced hippocampal NMDAR expression in NMDAR-IgG group. Significance: These findings suggest that neuronal surface auto-antibody administration induces seizure susceptibility and disturbed cognitive performance in the passive transfer rat model of LGI1 AE, which could be a potential in-vivo model for understanding immune-mediated mechanisms underlying epileptogenesis and highlight the potential targets for immune-mediated seizures in AE patients.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Epilepsy , Glioma , Humans , Rats , Animals , Leucine , Rats, Wistar , Seizures , Autoantibodies , Immunoglobulin G , Cognition
8.
Front Mol Neurosci ; 16: 1183775, 2023.
Article in English | MEDLINE | ID: mdl-37583518

ABSTRACT

Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.

9.
Neurosci Lett ; 776: 136574, 2022 04 17.
Article in English | MEDLINE | ID: mdl-35271996

ABSTRACT

Valproate (VPA) and levetiracetam (LEV), the two broad spectrum antiseizure drugs with antiabsence effects were previously tested for their antiepileptogenic effects when administered in the early postnatal period and revealed possible modification of the epileptogenic process though the effect being not persistent. The aim of this study was to investigate the effects of in utero exposure to these drugs on the absence epilepsy seizures of Genetic Absence Epilepsy Rats from Strasbourg (GAERS) rats on electroencephalogram (EEG) which are characterised by bilateral, symmetrical, and synchronized spike-and-wave discharges (SWDs). Considering LEV was proposed as a safer drug of choice in pregnancy, its effects on the newborn histopathology of GAERS was also investigated. Adult female GAERS were randomly grouped as VPA-(400 mg/kg/day), LEV- (100 mg/kg/day), and saline-treated. The drugs were injected into the animals intraperitoneally starting before pregnancy until parturition. The lungs, kidneys, and brains of the LEV-exposed newborns were evaluated histologically to be compared with unexposed naïve Wistar and GAERS newborns. Rest of the VPA-, LEV-, and saline-exposed offsprings were taken for EEG recordings on postnatal day 90. VPA or LEV did not show significant effect on mean cumulative duration and mean number of SWDs on EEG. The lungs of the LEV-exposed offsprings showed thickened alveolar epithelium in most regions, suggesting incomplete development of the alveoli. The renal examination revealed dilated Bowman's spaces in some renal corpuscles, which may be interpreted as a deleterious effect of LEV on the kidney. In addition, brain examination of LEV- and saline-exposed groups revealed irregularities in cortical thickness compared to Wistar control group. Lack of significant difference on SWD parameters may indicate that the mechanism responsible for the antiepileptogenic effects of VPA and LEV may not be operating in the prenatal period. The detrimental effect of LEV exposure observed in our study on the lungs and the kidneys of the newborns should be investigated by further studies with advanced molecular and biochemical techniques.


Subject(s)
Levetiracetam , Prenatal Exposure Delayed Effects , Valproic Acid , Animals , Anticonvulsants/adverse effects , Disease Models, Animal , Electroencephalography , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Female , Levetiracetam/adverse effects , Pregnancy , Rats , Rats, Wistar , Seizures/drug therapy , Valproic Acid/adverse effects
10.
Epilepsy Res ; 182: 106896, 2022 05.
Article in English | MEDLINE | ID: mdl-35286866

ABSTRACT

OBJECTIVE: Lacosamide (LCM) is a new generation antiepileptic drug that affects the slow inactivation of voltage-gated sodium channels. We studied whether chronic LCM treatment prior to onset of absence seizures was able to prevent/reduce the development of absence seizures in GAERS rats, a well-validated animal model of absence epilepsy and epileptogenesis. Drug effects on the duration, mean duration, number and spectral characteristics of spike-wave discharges (SWDs) were measured both 1 and 2 months after treatment withdrawal and compared with the ethosuximide (ETX) that has anti-epileptogenic activity in GAERS. Furthermore, the acute effects of LCM on SWDs in adult GAERS were evaluated. METHODS: GAERS rats were administered either with LCM (10 mg/kg/day or 30 mg/kg/day, i.p) or ETX (25 mg/kg/day, i.p) or saline (%0.9 NaCl) until PN60 for 40 consecutive days starting from PN20. Animals were stereotaxically implanted with cortical screw electrodes under ketamine/xylazine anesthesia at PN53. Following recovery period, EEG were recorded at PN60 (last day of drug administration)- 61-62, PN90-91-92 and PN120-121-122 time periods for 3 consecutive days. RESULTS: The chronic treatment with both LCM and ETX led to an ∼50% reduction in the development of spontaneous absence seizures in GAERS at PN90 and PN120 after the treatment withdrawal at PN60. The spectral analysis of EEG data revealed significant slowing of the peak frequency of SWDs in LCM treated animals at PN62. CONCLUSION: These results confirm that chronic LCM treatment modifies the development of absence seizures in GAERS and suggest that LCM exerts beneficial effects on absence seizure epileptogenesis.


Subject(s)
Epilepsy, Absence , Animals , Electroencephalography , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Ethosuximide/pharmacology , Ethosuximide/therapeutic use , Lacosamide , Rats , Rats, Wistar , Seizures/drug therapy , Sodium Channel Blockers
11.
Pharmacology ; 107(3-4): 227-234, 2022.
Article in English | MEDLINE | ID: mdl-35008085

ABSTRACT

INTRODUCTION: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents of Ih and absence epilepsy seizures are associated, but studies reveal differential results. OBJECTIVE: In our study, we aimed to investigate the role of the HCN channels on the expression of spike-and-wave discharges (SWDs) using the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. METHODS: HCN isoform levels from isolated brains of both naïve nonepileptic Wistar and GAERS groups were evaluated by enzyme-linked immunosorbent assay. ZD7288, an Ih inhibitor as well as an HCN channel antagonist, was administered intracerebroventricularly to the adult GAERS groups, and to evaluate their SWD activities, electroencephalography was recorded. The effect of ZD7288 on the cumulative total duration and number of SWDs and the mean duration of each SWD complex was evaluated. RESULTS: The HCN2 levels in the cortex and hippocampus of the GAERS group were lower compared to the naïve nonepileptic Wistar group (p < 0.05). ZD7288 increased the number of SWDs at the 20th and 120th min with the highest administered dose of 7 µg (p < 0.05). CONCLUSION: The Ih inhibitor ZD7288 increased the number of SWDs in a genetic absence epilepsy rat model, although this increase may not be significant due to the inconsistent time-dependent effects. In GAERS, the cortical and hippocampal HCN2 channel levels were significantly lower compared to the control group. Further studies are needed with higher doses of ZD7288 to determine if the effects will increase drastically.


Subject(s)
Epilepsy, Absence , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Potassium Channels/genetics , Animals , Electroencephalography , Epilepsy, Absence/drug therapy , Epilepsy, Absence/genetics , Pyrimidines , Rats , Rats, Wistar
12.
Br J Clin Pharmacol ; 88(7): 3516-3522, 2022 07.
Article in English | MEDLINE | ID: mdl-35014080

ABSTRACT

This prospective observational study describes the pharmacokinetic characteristics of favipiravir in adult patients hospitalized for mild to moderate COVID-19 with a positive RT-PCR test. Favipiravir was administered for 5 days, with a loading dose of 3200 mg and a maintenance dose of 1200 mg/day. Serial blood samples were collected on Day 2 and Day 4 of the therapy. Laboratory findings of the patients (n = 21) and in-hospital mortality were recorded. Favipiravir concentrations exhibited substantial variability and a significant decrease during the treatment of COVID-19. The median favipiravir trough concentration (C0-trough ) on Day 2 was 21.26 (interquartile range [IQR], 8.37-30.78) µg/mL, whereas it decreased significantly to 1.61 (IQR, 0.00-6.41) µg/mL on Day 4, the area under the concentration-time curve decreased by 68.5%. Day 2 C0-trough of female patients was higher than male patients. Our findings indicate that favipiravir concentrations show significant variability during the treatment of COVID-19 and therapeutic drug monitoring may be necessary to maintain targeted concentrations.


Subject(s)
COVID-19 Drug Treatment , Adult , Amides/adverse effects , Antiviral Agents/adverse effects , Female , Humans , Male , Pyrazines/adverse effects , Treatment Outcome
13.
Turk Neurosurg ; 31(4): 623-633, 2021.
Article in English | MEDLINE | ID: mdl-33978223

ABSTRACT

AIM: To investigate neurogenesis in both adult and 3-week-old genetic absence epilepsy rats from Strasbourg (GAERS) to determine if newly formed neurons within the dentate gyrus (DG) form synaptic contacts with GABAergic (gamma aminobutyric acid) and glutamatergic nerve terminals and compared to the control (non-GAERS) Wistar rats. MATERIAL AND METHODS: Brain tissue was processed for electron microscopic assessment. Thin sections from the hippocampal DG were double-labelled for anti-GABA or anti-VGLUT1 (vesicular glutamate transporter 1) and anti-doublecortin (DCX) antibodies using immunogold methodology and examined with the transmission electron microscope for morphological changes and to quantify the density of gold labeling. RESULTS: DCX immunoreactivity was demonstrated within axon terminals, dendrites and somata in all groups. DCX and GABA or VGLUT1 were found to be co-localized in the axon terminals in all groups. We observed that DCX-immunoreactive (-ir) profiles formed synaptic contacts with GABAergic and glutamatergic terminals. The percentage of DCX labeling in dendrites, compared to axons, and the percentage of DCX-ir terminal profiles forming asymmetrical synapses, compared to those forming symmetrical synapses, were increased in all groups compared to the control group. DCX immunoreactivity in the 21-day-old GAERS group was found to be increased compared to the Wistar group. CONCLUSION: We conclude that newly born neurons are incorporated into the local hippocampal network in both the GAERS and the control Wistar rats. The results suggest that the neurogenesis taking place in the hippocampus may also be involved in the mechanism underlying absence seizures in GAERS.


Subject(s)
Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Neurogenesis/physiology , Animals , Doublecortin Protein , Epilepsy, Absence/diagnosis , Epilepsy, Absence/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/ultrastructure , Immunohistochemistry/methods , Male , Microscopy, Electron/methods , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure , Rats , Rats, Transgenic , Rats, Wistar , Synapses/physiology , Synapses/ultrastructure , gamma-Aminobutyric Acid/metabolism
14.
Epilepsy Behav ; 116: 107791, 2021 03.
Article in English | MEDLINE | ID: mdl-33578223

ABSTRACT

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.


Subject(s)
COVID-19/epidemiology , Climate Change , Epilepsy/epidemiology , Global Health/trends , Public Health/trends , Animals , COVID-19/prevention & control , Death, Sudden , Epilepsy/therapy , Hot Temperature/adverse effects , Humans , Humidity/adverse effects , Sleep Deprivation/epidemiology , Sleep Deprivation/therapy , Weather
15.
Ultrastruct Pathol ; 44(4-6): 379-386, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33118420

ABSTRACT

Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a well-known animal model of absence epilepsy and they are resistant to electrical kindling stimulations. The present study aimed to examine possible differences in gamma-aminobutyric acid (GABA) levels and synapse counts in the substantia nigra pars reticulata anterior (SNRa) and posterior (SNRp) regions between GAERS and Wistar rats receiving kindling stimulations. Animals in the kindling group either received six stimulations in the amygdala and had grade 2 seizures or they were kindled, having grade five seizures. Rats were decapitated one hour after the last stimulation. SNR regions were obtained after vibratome sectioning of the brain tissue. GABA immunoreactivity was detected by immunogold method and synapses were counted. Sections were observed by transmission electron microscope and analyzed by Image J program. GABA density in the SNRa region of fully kindled GAERS and Wistar groups increased significantly compared to that of their corresponding grade 2 groups. The number of synapses increased significantly in kindled and grade 2 GAERS groups, compared to kindled and grade 2 Wistar groups, respectively, in the SNRa region. GABA density in the SNRp region of kindled GAERS group increased significantly compared to that of GAERS grade 2 group. In the SNRp region, both kindled and grade 2 GAERS groups were found to have increased number of synapses compared to that of GAERS control group. We concluded that both SNRa and SNRp regions may be important in modulating resistance of GAERS to kindling stimulations.


Subject(s)
Epilepsy, Absence/metabolism , Pars Reticulata/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , gamma-Aminobutyric Acid/metabolism , Animals , Disease Models, Animal , Epilepsy, Absence/pathology , Immunohistochemistry , Kindling, Neurologic/metabolism , Kindling, Neurologic/pathology , Male , Microscopy, Electron, Transmission , Pars Reticulata/metabolism , Pars Reticulata/pathology , Rats , Rats, Wistar , Synapses/pathology , gamma-Aminobutyric Acid/analysis
16.
Epilepsia ; 61(12): 2825-2835, 2020 12.
Article in English | MEDLINE | ID: mdl-33098125

ABSTRACT

OBJECTIVE: The role of α2A adrenergic receptors (α2A ARs) in absence epilepsy is not well characterized. Therefore, we investigated the outcomes of the specific antagonism of α2A ARs on the spike-and-wave discharges (SWDs) in genetic absence epilepsy rats from Strasbourg (GAERSs), together with its influence on the behavior and second messenger systems, which may point to the mechanisms to which a possible SWD modulation can be related. METHODS: Atipamezole, an α2A AR antagonist, was administered intracerebroventricularly to the adult GAERSs, and electroencephalography (EEG) was conducted. The cumulative duration and number of SWDs, and the mean duration of each SWD complex were counted. The relative power of the EEG frequency bands and behavioral activity after the acute application of two doses (12 and 31 µg/5 µL) of atipamezole were evaluated. The levels of cyclic adenosine monophosphate and calcium/calmodulin-dependent kinase II (CaMKII) were measured in the cortex, thalamus, and hippocampus of naive Wistar rats and GAERSs, administered with artificial cerebrospinal fluid (aCSF) as a vehicle, or either acute or chronic atipamezole (12 µg), the latter being administered for 5 consecutive days. RESULTS: Atipamezole significantly suppressed SWDs dose-dependently, without affecting the relative power values of EEG frequency spectrum. The stereotypic activity was significantly lower in both naive Wistar rats and GAERSs receiving the highest dose (31 µg) of atipamezole compared to GAERSs receiving aCSF. In GAERSs, CaMKII levels were found to be higher in the thalamus after the acute and chronic application of SWD-suppressing doses of atipamezole (12 and 31 µg) compared to aCSF. SIGNIFICANCE: This study emphasizes the α2 AR-related modulation of absence epilepsy and particularly the significance of α2 AR antagonism in suppressing SWDs. Atipamezole's SWD-suppressive actions may be through CaMKII-mediated second messenger systems in the thalamus.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Anticonvulsants/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Epilepsy, Absence/drug therapy , Imidazoles/pharmacology , Thalamus/drug effects , Animals , Anticonvulsants/administration & dosage , Brain/enzymology , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Electroencephalography , Enzyme-Linked Immunosorbent Assay , Epilepsy, Absence/enzymology , Epilepsy, Absence/physiopathology , Female , Imidazoles/administration & dosage , Injections, Intraventricular , Male , Rats , Rats, Inbred Strains , Rats, Wistar , Thalamus/physiopathology
17.
Ultrastruct Pathol ; 44(4-6): 372-378, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33121293

ABSTRACT

This study aimed to investigate ultrastructural synaptic alterations in rat hippocampus after in utero exposure to irradiation (IR) and postnatal exposure to hyperthermia (HT). There were four groups in each of the time points (3rd and 6th months). IR group: Pregnant rats were exposed to radiation on the 17th gestational day. HT group: Hyperthermia was applied to the rat pups on the 10th day after their birth. IR+HT group: Both IR and HT were applied at the same time periods. Control group: No IR or HT was applied. Rat pups were sacrificed after 3 and 6 months. Thin sections from the dentate gyrus (DG) and the CA3 of hippocampus were evaluated for synapse numbers by electron microscopy. Synapses were counted, and statistical analysis was performed. Abnormalities in myelin sheath, mossy terminals and neuropil were observed in the CA3 and DG of all groups. The synapses in the CA3 region were significantly increased in the IR-3rd month, IR-6th month, and IR+HT-3rd month groups vs control group. Synapses were significantly increased in the DG of HT-3rd month group. A trend for an increase in synapse numbers was seen in the CA3 and DG. Increased number of synapses in the rat hippocampus may be due to mossy fiber sprouting, possibly caused by in utero irradiation and/or postnatal hyperthermia.


Subject(s)
Hippocampus/ultrastructure , Hyperthermia/pathology , Prenatal Exposure Delayed Effects/pathology , Radiation Injuries, Experimental/pathology , Synapses/ultrastructure , Animals , Female , Hippocampus/pathology , Hippocampus/radiation effects , Pregnancy , Rats , Rats, Wistar , Synapses/pathology , Synapses/radiation effects
18.
North Clin Istanb ; 7(1): 25-34, 2020.
Article in English | MEDLINE | ID: mdl-32232200

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of γ-butyrolactone (GBL), a prodrug of gamma-Hydroxybutyric acid -induced absence seizures on the development of kindling in Wistar rats. METHODS: Three groups of adult male Wistar rats under anesthesia were implanted with bilateral cortical recording electrodes for the GBL group (GBL) and/or bipolar stimulation electrodes into the right basolateral amygdala for the Kindling group (KI) alone and Kindling plus GBL group (GBL+KI). Rats in the KI and GBL+KI groups were stimulated twice daily at the afterdischarge threshold until they reached Racine's stage 5 seizure state. The animals in the GBL + group had an i.p injection of GBL 20 minutes before each electrical stimulation, and the effects of GBL-induced seizures on the development of kindling were investigated. The animals in the GBL group were injected GBL twice daily i.p. for 15 days without receiving any electrical stimulation. RESULTS: The KI animals reached stage 5 seizure stage at 12th stimulations, whereas the GBL+KI rats reached at 27th stimulations. The mean numbers of stimulations needed for the development of the first stage 3, 4, or 5 generalized seizures were significantly higher in the GBL+KI group than the KI group. CONCLUSION: The resistance to amygdala kindling in the GBL model can be modulated by the absence seizure mechanism alone, without the intervention of an abnormal genetic background.

19.
Pharmacology ; 105(9-10): 561-567, 2020.
Article in English | MEDLINE | ID: mdl-32101873

ABSTRACT

INTRODUCTION: Absence epilepsy is associated with diffuse spike-and-wave discharges (SWD) on the electroencephalogram (EEG). Recent studies have demonstrated that the primary somatosensory cortex is also implicated in the generation of the SWDs. OBJECTIVE: This study investigated the effects of systemic and local administrations of U-92032 into the brain of Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS: GAERS animals underwent stereotaxic surgery for the placement of EEG recording electrodes and guide cannulas for U-92032 administration into the lateral ventricle (intracerebroventricular [i.c.v.]), upper lips area (S1Ulp) or barrel field area (S1B) of primary somatosensory cortex. Following 7 days of recovery, electrical activity was recorded continuously for 1 h before and 6 h after intraperitoneal (0.25; 1; 5 mg/kg i.p.) or local U-92032 or dimethyl sulfoxide (DMSO) injections. RESULTS: No changes were detected in the cumulative duration, mean duration, and number of SWDs following i.p. U-92032 injections. Local i.c.v. injections of U-92032 caused a significant decrease in the cumulative duration (i.c.v., 50 and 100 nmol/L), mean duration (i.c.v., 50, 100, and 250 nmol/L), and the number (i.c.v., 250 nmol/L) of SWDs compared to DMSO groups. Intra-cortical (S1Ulp and S1B) U-92032 injections caused a significant decrease in all 3 parameters compared to DMSO groups, as well. CONCLUSION: Intra-cortical injection of U-92032 caused almost complete removal of SWDs in GAERS and i.c.v. administration resulted in a significant reduction. However, systemic i.p. administration did not cause a significant change with the applied -doses.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/metabolism , Epilepsy, Absence/drug therapy , Piperazines/pharmacology , Tropolone/analogs & derivatives , Animals , Calcium Channel Blockers/administration & dosage , Disease Models, Animal , Electrodes, Implanted , Electroencephalography , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Female , Infusions, Intraventricular , Injections, Intraperitoneal , Male , Piperazines/administration & dosage , Rats , Rats, Wistar , Somatosensory Cortex/drug effects , Somatosensory Cortex/physiopathology , Tropolone/administration & dosage , Tropolone/pharmacology
20.
Brain Connect ; 9(9): 703-710, 2019 11.
Article in English | MEDLINE | ID: mdl-31591912

ABSTRACT

The thalamo-cortical circuit is important in the genesis of absence epilepsy. This circuit can be influenced by connecting pathways from various parts of central nervous system. The aim of the present study is to define the dento-thalamic connections in Wistar animals and compare the results with genetic absence epilepsy rats from Strasbourg (GAERS) using the biotinylated dextran amine (BDA) tracer. We injected BDA into the dentate nucleus of 13 (n = 6 Wistar and n = 7 GAERS) animals. The dento-thalamic connections in the Wistar animals were denser and were connected to a wider range of thalamic nuclei compared with GAERS. The dentate nucleus was bilaterally connected to the central (central medial [CM], paracentral [PC]), ventral (ventral medial [VM], ventral lateral [VL], and ventral posterior lateral [VPL]), and posterior (Po) thalamic nuclei in Wistar animals. The majority of these connections were dense contralaterally and scarce ipsilaterally. Contralateral connections were present with the parafascicular (PF), ventral posterior medial, ventral anterior (VA), and central lateral (CL) thalamic nuclei in Wistar animals. Whereas in GAERS, bilateral connections were observed with the VL and CM. Contralateral connections were present with the PC, VM, VA, and PF thalamic nuclei in GAERS. The CL, VPL, and Po thalamic nucleus connections were not observed in GAERS. The present study showed weak/deficit dento-thalamic connections in GAERS compared with control Wistar animals. The scarce information flow from the dentate nucleus to thalamus in GAERS may have a deficient modulatory role on the thalamus and thus may affect modulation of the thalamo-cortical circuit.


Subject(s)
Cerebral Cortex/physiopathology , Epilepsy, Absence/physiopathology , Thalamus/physiopathology , Animals , Biotin/analogs & derivatives , Cerebellar Nuclei/diagnostic imaging , Dextrans , Disease Models, Animal , Epilepsy/physiopathology , Magnetic Resonance Imaging , Male , Rats , Rats, Inbred Strains , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...