Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35185150

ABSTRACT

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , ras Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638998

ABSTRACT

During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells. Secondary transplants showed increased survival in treated compared to untreated mice. Unlike the AML model, BCL-2 expression and RAS activity decreased following treatment and the RAS:BCL-2 complex remained in the plasma membrane. Exon-specific gene expression profiling (GEP) of HR-MDS mice showed 1952 differentially regulated genes upon treatment, including genes important for the regulation of stem cells, differentiation, proliferation, oxidative phosphorylation, mitochondrial function, and apoptosis; relevant in human disease. Spliceosome genes, found to be abnormal in MDS patients and downregulated in our HR-MDS model, such as Rsrc1 and Wbp4, were upregulated by the treatment, as were genes involved in epigenetic regulation, such as DNMT3A and B, upregulated upon disease progression and downregulated upon treatment.


Subject(s)
Biphenyl Compounds/administration & dosage , Gene Expression Regulation/drug effects , Monomeric GTP-Binding Proteins/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Nitrophenols/administration & dosage , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Sulfonamides/administration & dosage , Animals , Apoptosis/drug effects , Bone Marrow/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Profiling/methods , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Myelodysplastic Syndromes/mortality , Piperazines/administration & dosage , Proto-Oncogene Proteins c-bcl-2/genetics , Stem Cells/drug effects , Transcriptome/drug effects
4.
Blood ; 137(1): 89-102, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32818241

ABSTRACT

The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.


Subject(s)
Cell Differentiation/physiology , Erythroid Cells/cytology , Erythropoiesis/physiology , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Hematopoietic Stem Cells , Humans , Mice , Organelle Biogenesis
6.
Hemasphere ; 3(Suppl): 27, 2019 Jun.
Article in English | MEDLINE | ID: mdl-35309795
7.
Cell Death Differ ; 26(9): 1813-1831, 2019 09.
Article in English | MEDLINE | ID: mdl-30538287

ABSTRACT

Achaete-scute homolog 1 gene (ASCL1) is a gene classifier for the proneural (PN) transcriptional subgroup of glioblastoma (GBM) that has a relevant role in the neuronal-like differentiation of GBM cancer stem cells (CSCs) through the activation of a PN gene signature. Besides prototypical ASCL1 PN target genes, the molecular effectors mediating ASCL1 function in regulating GBM differentiation and, most relevantly, subgroup specification are currently unknown. Here we report that ASCL1 not only promotes the acquisition of a PN phenotype in CSCs by inducing a glial-to-neuronal lineage switch but also concomitantly represses mesenchymal (MES) features by directly downregulating the expression of N-Myc downstream-regulated gene 1 (NDRG1), which we propose as a novel gene classifier of MES GBMs. Increasing the expression of ASCL1 in PN CSCs results in suppression of self-renewal, promotion of differentiation and, most significantly, decrease in tumorigenesis, which is also reproduced by NDRG1 silencing. Conversely, both abrogation of ASCL1 expression in PN CSCs and enforcement of NDRG1 expression in either PN or MES CSCs induce proneural-to-mesenchymal transition (PMT) and enhanced mesenchymal features. Surprisingly, ASCL1 overexpression in MES CSCs increases malignant features and gives rise to a neuroendocrine-like secretory phenotype. Altogether, our results propose that the fine interplay between ASCL1 and its target NDRG1 might serve as potential subgroup-specific targetable vulnerability in GBM; enhancing ASCL1 expression in PN GBMs might reduce tumorigenesis, whereas repressing NDRG1 expression might be actionable to hamper the malignancy of GBM belonging to the MES subgroup.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Glioblastoma/genetics , Intracellular Signaling Peptides and Proteins/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Self Renewal/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Signal Transduction
8.
Front Immunol ; 9: 1357, 2018.
Article in English | MEDLINE | ID: mdl-29963052

ABSTRACT

Natural killer cells (NK) contribute significantly to eradication of cancer cells, and there is increased interest in strategies to enhance it's efficacy. Therapeutic agents used in the treatment of cancer can impact the immune system in a quantitative and qualitative manner. In this study, we evaluated the impact of arsenic trioxide (ATO) used in the management of acute promyelocytic leukemia (APL) on NK cell reconstitution and function. In patients with APL treated with single agent ATO, there was a significant delay in the reconstitution of circulating NK cells to reach median normal levels from the time of diagnosis (655 days for NK cells vs 145 and 265 days for T cells and B cells, respectively). In vitro experiments demonstrated that ATO significantly reduced the CD34 hematopoietic stem cell (HSC) differentiation to NK cells. Additional experimental data demonstrate that CD34+ sorted cells when exposed to ATO lead to a significant decrease in the expression of IKZF2, ETS1, and TOX transcription factors involved in NK cell differentiation and maturation. In contrast, exposure of NK cells and leukemic cells to low doses of ATO modulates NK cell receptors and malignant cell ligand profile in a direction that enhances NK cell mediated cytolytic activity. We have demonstrated that NK cytolytic activity toward NB4 cell line when exposed to ATO was significantly higher when compared with controls. We also validated this beneficial effect in a mouse model of APL were the median survival with ATO alone and ATO + NK was 44 days (range: 33-46) vs 54 days (range: 52-75). In conclusion, ATO has a differential quantitative and qualitative effect on NK cell activity. This information can potentially be exploited in the management of leukemia.

9.
Oncotarget ; 8(29): 47103-47109, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28514758

ABSTRACT

Azacitidine (AZA), the reference treatment for most higher-risk myelodysplastic (MDS) patients can also improve overall survival (OS) in elderly acute myeloid leukemia (AML) patients ineligible for intensive chemotherapy, but reliable biological markers predicting response and OS in patients treated with AZA are lacking. In a preliminary study, we found that an increase of the percentage of BCL2L10, an anti-apoptotic member of the bcl-2 family, was correlated with AZA resistance. In this study, we assessed prospectively by flow cytometry the prognostic value of BCL2L10 positive bone marrow mononuclear cells in 70 patients (42 MDS and 28 AML), prior to AZA treatment.In patients with baseline marrow blasts below 30%, the baseline percentage of bone marrow BCL2L10 positive cells inversely correlated with response to AZA and OS independently of the International Prognostic Scoring System (IPSS) and IPSS-revised (IPSS-R). Specifically, OS was significantly lower in patients with more than 10% BCL2L10 positive cells (median 8.3 vs 22.9 months in patients with less than 10% positivity, p = 0,001). In summary, marrow BCL2L10 positive cells may be a biomarker for azacitidine response and OS, with a potential impact in clinical practice.


Subject(s)
Bone Marrow Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/mortality , Proto-Oncogene Proteins c-bcl-2/metabolism , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Biomarkers , Bone Marrow Cells/pathology , Female , Gene Expression , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Male , Middle Aged , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Neoplasm Staging , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics , Treatment Outcome
10.
Leuk Lymphoma ; 58(5): 1178-1183, 2017 05.
Article in English | MEDLINE | ID: mdl-27724056

ABSTRACT

Addressing the global burden of cancer, understanding its diverse biology, and promoting appropriate prevention and treatment strategies around the world has become a priority for the United Nations and International Atomic Energy Agency (IAEA), the WHO, and International Agency for Research on Cancer (IARC). The IAEA sponsored an international prospective cohort study to better understand biology, treatment response, and outcomes of diffuse large B-cell lymphoma (DLBCL) in low and middle-income countries across five UN-defined geographical regions. We report an analysis of biological variation in DLBCL across seven ethnic and environmentally diverse populations. In this cohort of 136 patients treated to a common protocol, we demonstrate significant biological differences between countries, characterized by a validated prognostic gene expression score (p < .0001), but International Prognostic Index (IPI)-adjusted survivals in all participating countries were similar. We conclude that DLBCL treatment outcomes in these populations can be benchmarked to international standards, despite biological heterogeneity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/epidemiology , Adult , Aged , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Biomarkers, Tumor , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Female , Global Health , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Middle Aged , Population Surveillance , Prednisone/therapeutic use , Prognosis , Rituximab , Treatment Outcome , Vincristine/therapeutic use
11.
Oncotarget ; 7(50): 83319-83329, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27825111

ABSTRACT

As a part of an international study on the molecular analysis of Diffuse Large B-cell Lymphoma (DLBCL), a robust protocol for gene expression analysis from RNA extraction to qRT-PCR using Formalin Fixed Paraffin Embedded tissues was developed. Here a study was conducted to define a strategy to validate the previously reported 6-gene (LMO2, BCL6, FN1, CCND2, SCYA3 and BCL2) model as predictor of prognosis in DLBCL. To avoid variation, all samples were tested in a single centre and single platform. This study comprised 8 countries (Brazil, Chile, Hungary, India, Philippines, S. Korea, Thailand and Turkey). Using the Kaplan-Meier and log rank test on patients (n=162) and two mortality risk groups (with those above and below the mean representing high and low risk groups) confirmed that the 6-gene predictor score correlates significantly with overall survival (OS, p<0.01) but not with event free survival (EFS, p=0.18). Adding the International Prognostic Index (IPI) shows that the 6-gene predictor score correlates significantly with high IPI scores for OS (p<0.05), whereas those with low IPI scores show a trend not reaching significance (p=0.08). This study defined an effective and economical qRT-PCR strategy and validated the 6-gene score as a predictor of OS in an international setting.


Subject(s)
Biomarkers, Tumor/genetics , Fixatives/chemistry , Formaldehyde/chemistry , Gene Expression Profiling/methods , Lymphoma, Large B-Cell, Diffuse/genetics , Paraffin Embedding , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tissue Fixation/methods , Transcriptome , Aged , Asia , Biopsy , Disease-Free Survival , Europe , Female , Gene Expression Profiling/standards , Genetic Predisposition to Disease , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Phenotype , Predictive Value of Tests , Proportional Hazards Models , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/standards , South America , Time Factors
12.
J Hematol Oncol ; 9: 5, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26817437

ABSTRACT

BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.


Subject(s)
Gene Expression Profiling/methods , Leukemia, Myeloid/genetics , Myelodysplastic Syndromes/genetics , Signal Transduction/genetics , Acute Disease , Animals , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid/pathology , Mice , Mice, Transgenic , Myelodysplastic Syndromes/pathology , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors
13.
Oncotarget ; 6(32): 32494-508, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26378812

ABSTRACT

We have previously shown that a specific promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) DNA vaccine combined with all-trans retinoic acid (ATRA) increases the number of long term survivors with enhanced immune responses in a mouse model of acute promyelocytic leukemia (APL). This study reports the efficacy of a non-specific DNA vaccine, pVAX14Flipper (pVAX14), in both APL and high risk myelodysplastic syndrome (HR-MDS) models. PVAX14 is comprised of novel immunogenic DNA sequences inserted into the pVAX1 therapeutic plasmid. APL mice treated with pVAX14 combined with ATRA had increased survival comparable to that obtained with a specific PML-RARA vaccine. Moreover, the survival advantage correlated with decreased PML-RARA transcript levels and increase in anti-RARA antibody production. In HR-MDS mice, pVAX14 significantly improved survival and reduced biomarkers of leukemic transformation such as phosphorylated mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1. In both preclinical models, pVAX14 vaccine significantly increased interferon gamma (IFNγ) production, memory T-cells (memT), reduced the number of colony forming units (CFU) and increased expression of the adapter molecule signalling to NF-κB, MyD88. These results demonstrate the adjuvant properties of pVAX14 providing thus new approaches to improve clinical outcome in two different models of myeloid malignancies, which may have potential for a broader applicability in other cancers.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cancer Vaccines/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Neoplasms, Experimental/drug therapy , Tretinoin/pharmacology , Vaccines, DNA/pharmacology , Animals , Antibodies/blood , Base Sequence , Cancer Vaccines/immunology , Gene Expression Regulation, Neoplastic , Genes, ras , Immunologic Memory/drug effects , Interferon-gamma/immunology , Interferon-gamma/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Transgenic , Molecular Sequence Data , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Tumor Burden/drug effects , Vaccination , Vaccines, DNA/immunology
14.
PLoS One ; 10(3): e0121912, 2015.
Article in English | MEDLINE | ID: mdl-25822503

ABSTRACT

There is limited data on the clinical, cellular and molecular changes in relapsed acute promyeloytic leukemia (RAPL) in comparison with newly diagnosed cases (NAPL). We undertook a prospective study to compare NAPL and RAPL patients treated with arsenic trioxide (ATO) based regimens. 98 NAPL and 28 RAPL were enrolled in this study. RAPL patients had a significantly lower WBC count and higher platelet count at diagnosis. IC bleeds was significantly lower in RAPL cases (P=0.022). The ability of malignant promyelocytes to concentrate ATO intracellularly and their in-vitro IC50 to ATO was not significantly different between the two groups. Targeted NGS revealed PML B2 domain mutations in 4 (15.38%) of the RAPL subset and none were associated with secondary resistance to ATO. A microarray GEP revealed 1744 genes were 2 fold and above differentially expressed between the two groups. The most prominent differentially regulated pathways were cell adhesion (n=92), cell survival (n=50), immune regulation (n=74) and stem cell regulation (n=51). Consistent with the GEP data, immunophenotyping revealed significantly increased CD34 expression (P=0.001) in RAPL cases and there was in-vitro evidence of significant microenvironment mediated innate resistance (EM-DR) to ATO. Resistance and relapse following treatment with ATO is probably multi-factorial, mutations in PML B2 domain while seen only in RAPL may not be the major clinically relevant cause of subsequent relapses. In RAPL additional factors such as expansion of the leukemia initiating compartment along with EM-DR may contribute significantly to relapse following treatment with ATO based regimens.


Subject(s)
Antineoplastic Agents/therapeutic use , Arsenicals/therapeutic use , Leukemia, Promyelocytic, Acute/drug therapy , Oxides/therapeutic use , Adolescent , Adult , Antineoplastic Agents/blood , Arsenic Trioxide , Arsenicals/blood , Cell Line, Tumor , Child , Child, Preschool , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Profiling , Granulocyte Precursor Cells/drug effects , Granulocyte Precursor Cells/pathology , Granulocyte Precursor Cells/physiology , Humans , Leukemia, Promyelocytic, Acute/blood , Leukemia, Promyelocytic, Acute/diagnosis , Male , Middle Aged , Mutation , Nuclear Proteins/genetics , Oxides/blood , Promyelocytic Leukemia Protein , Prospective Studies , Recurrence , Transcription Factors/genetics , Tretinoin/therapeutic use , Tumor Suppressor Proteins/genetics , Young Adult
15.
J Nucl Med ; 55(12): 1936-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25429159

ABSTRACT

UNLABELLED: The International Atomic Energy Agency sponsored a large, multinational, prospective study to further define PET for risk stratification of diffuse large B-cell lymphoma and to test the hypothesis that international biological diversity or diversity of healthcare systems may influence the kinetics of treatment response as assessed by interim PET (I-PET). METHODS: Cancer centers in Brazil, Chile, Hungary, India, Italy, the Philippines, South Korea, and Thailand followed a common protocol based on treatment with R-CHOP (cyclophosphamide, hydroxyadriamycin, vincristine, prednisolone with rituximab), with I-PET after 2-3 cycles of chemotherapy and at the end of chemotherapy scored visually. RESULTS: Two-year survivals for all 327 patients (median follow-up, 35 mo) were 79% (95% confidence interval [CI], 74%-83%) for event-free survival (EFS) and 86% (95% CI, 81%-89%) for overall survival (OS). Two hundred ten patients (64%) were I-PET-negative, and 117 (36%) were I-PET-positive. Two-year EFS was 90% (95% CI, 85%-93%) for I-PET-negative and 58% (95% CI, 48%-66%) for I-PET-positive, with a hazard ratio of 5.31 (95% CI, 3.29-8.56). Two-year OS was 93% (95% CI, 88%-96%) for I-PET-negative and 72% (95% CI, 63%-80%) for I-PET-positive, with a hazard ratio of 3.86 (95% CI, 2.12-7.03). On sequential monitoring, 192 of 312 (62%) patients had complete response at both I-PET and end-of-chemotherapy PET, with an EFS of 97% (95% CI, 92%-98%); 110 of these with favorable clinical indicators had an EFS of 98% (95% CI, 92%-100%). In contrast, the 107 I-PET-positive cases segregated into 2 groups: 58 (54%) achieved PET-negative complete remission at the end of chemotherapy (EFS, 86%; 95% CI, 73%-93%); 46% remained PET-positive (EFS, 35%; 95% CI, 22%-48%). Heterogeneity analysis found no significant difference between countries for outcomes stratified by I-PET. CONCLUSION: This large international cohort delivers 3 novel findings: treatment response assessed by I-PET is comparable across disparate healthcare systems, secondly a negative I-PET findings together with good clinical status identifies a group with an EFS of 98%, and thirdly a single I-PET scan does not differentiate chemoresistant lymphoma from complete response and cannot be used to guide risk-adapted therapy.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Lymphoma, Large B-Cell, Diffuse/therapy , Adult , Aged , Chemoradiotherapy , Cohort Studies , Female , Humans , Lymphoma, Large B-Cell, Diffuse/mortality , Male , Middle Aged , Positron-Emission Tomography , Predictive Value of Tests , Risk Factors , Survival Analysis , Treatment Failure , Treatment Outcome
16.
Blood ; 122(16): 2864-76, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-23943652

ABSTRACT

Myelodysplastic syndrome (MDS) transforms into an acute myelogenous leukemia (AML) with associated increased bone marrow (BM) blast infiltration. Using a transgenic mouse model, MRP8[NRASD12/hBCL-2], in which the NRAS:BCL-2 complex at the mitochondria induces MDS progressing to AML with dysplastic features, we studied the therapeutic potential of a BCL-2 homology domain 3 mimetic inhibitor, ABT-737. Treatment significantly extended lifespan, increased survival of lethally irradiated secondary recipients transplanted with cells from treated mice compared with cells from untreated mice, with a reduction of BM blasts, Lin-/Sca-1(+)/c-Kit(+), and progenitor populations by increased apoptosis of infiltrating blasts of diseased mice assessed in vivo by technicium-labeled annexin V single photon emission computed tomography and ex vivo by annexin V/7-amino actinomycin D flow cytometry, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, caspase 3 cleavage, and re-localization of the NRAS:BCL-2 complex from mitochondria to plasma membrane. Phosphoprotein analysis showed restoration of wild-type (WT) AKT or protein kinase B, extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase patterns in spleen cells after treatment, which showed reduced mitochondrial membrane potential. Exon specific gene expression profiling corroborates the reduction of leukemic cells, with an increase in expression of genes coding for stem cell development and maintenance, myeloid differentiation, and apoptosis. Myelodysplastic features persist underscoring targeting of BCL-2-mediated effects on MDS-AML transformation and survival of leukemic cells.


Subject(s)
Biphenyl Compounds/pharmacology , Leukemia, Myeloid, Acute/metabolism , Nitrophenols/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , ras Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Lineage , Cell Membrane/metabolism , Cell Proliferation , Cell Transformation, Neoplastic , Cell Transplantation , Disease Models, Animal , Flow Cytometry , Gene Expression Regulation, Leukemic , MAP Kinase Signaling System , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/metabolism , Stem Cells/cytology
17.
Mol Cell Probes ; 27(1): 1-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22906630

ABSTRACT

Using an acute promyelocytic leukemia (APL) preclinical model, we show that oncogene-specific PCR (Polymerase Chain Reaction)-based assays allow to evaluate the efficacy of immunotherapy combining all-trans retinoic acid (ATRA) and a DNA-based vaccine targeting the promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) oncogene. Kaplan-Meier survival analysis according to the peripheral blood PML-RARα normalized copy number (NCN) clearly shows that ATRA + DNA-treated mice with an NCN lower than 10 (43%) formed the group with a highly significant (p < 0.0001) survival advantage. Furthermore, a PCR assay was used to assess various tissues and organs for the presence of PML-RARα-positive cells in long-term survivors (n = 15). As expected, the majority of mice (n = 10) had no measurable tissue level of PML-RARα. However, five mice showed a weak positive signal in both the brain and spleen (n = 2), in the brain only (n = 2) and in the spleen only (n = 1). Thus tracking the oncogene-positive cells in long-term survivors reveals for the first time that extramedullary PML-RARα-positive cell reservoirs such as the brain may persist and be involved in relapses.


Subject(s)
Immunotherapy , Leukemia, Promyelocytic, Acute/therapy , Oncogene Proteins, Fusion/metabolism , Tretinoin/therapeutic use , Vaccines, DNA/therapeutic use , Animals , Brain/cytology , Gene Dosage , Kaplan-Meier Estimate , Leukemia, Promyelocytic, Acute/mortality , Mice , Mice, Transgenic , Neoplasm Proteins/therapeutic use , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/immunology , Spleen/cytology , Treatment Outcome
18.
Haematologica ; 98(1): 10-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23065517

ABSTRACT

Myelodysplastic syndromes represent particularly challenging hematologic malignancies that arise from a large spectrum of genetic events resulting in a disease characterized by a range of different presentations and outcomes. Despite efforts to classify and identify the key genetic events, little improvement has been made in therapies that will increase patient survival. Animal models represent powerful tools to model and study human diseases and are useful pre-clinical platforms. In addition to enforced expression of candidate oncogenes, gene inactivation has allowed the consequences of the genetic effects of human myelodysplastic syndrome to be studied in mice. This review aims to examine the animal models expressing myelodysplastic syndrome-associated genes that are currently available and to highlight the most appropriate model to phenocopy myelodysplastic syndrome disease and its risk of transformation to acute myelogenous leukemia.


Subject(s)
Disease Models, Animal , Genetic Association Studies/methods , Genetic Engineering/methods , Myelodysplastic Syndromes/genetics , Animals , Humans , Mice , Myelodysplastic Syndromes/diagnosis
19.
Leuk Res ; 37(3): 312-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23153525

ABSTRACT

We have previously demonstrated that two prognostic features of myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML), mutant NRAS and over-expressing BCL-2, cooperate physically and functionally in vivo. Screening of MDS patient bone marrow (BM) identified NRAS:BCL-2 co-localization in 64% cases, correlating with percentage BM blasts, apoptotic features and disease status (p<0.0001). Localization of the complex at the plasma membrane or the mitochondria correlated with disease and apoptosis features in MDS patients, whilst caspase-9 mediated mechanism was elucidated in vivo and in vitro. The intensity and localization of the RAS:BCL-2 complex merits further evaluation as a novel biomarker of MDS.


Subject(s)
Apoptosis , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , ras Proteins/metabolism , Animals , Apoptosis/genetics , Cell Membrane/metabolism , Disease Progression , Genes, ras , Humans , Mice , Mice, Transgenic , Models, Biological , Multiprotein Complexes/metabolism , Myelodysplastic Syndromes/genetics , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics , Tissue Distribution/physiology
20.
Exp Hematol ; 39(5): 542-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21320566

ABSTRACT

OBJECTIVE: Primary polycythemia in dogs is classified as a myeloproliferative syndrome with a chronic progressive course and unspecific symptoms. Diagnosis is based on exclusion criteria. In humans, the presence of an acquired recurrent mutation within the JAK2 gene has recently been identified in 90% of the patients with polycythemia vera. This mutation (V617F) is located in the pseudokinase domain of JAK2, leading to constitutive activation of the kinase responsible for the polycythemia. Detection of the mutation has now become a major diagnostic tool in humans for polycythemia vera diagnosis. As the canine JAK2 gene shares strong homology with its human counterpart, we looked for the presence of JAK2 mutations in dogs with an elevated hematocrit. MATERIALS AND METHODS: Direct sequencing of the JAK2 exon 14 was performed on DNA extracted from the peripheral blood of five dogs suspected of primary polycythemia. Mutant subclones were expressed in interleukin-3-dependent BaF3 cells and tested for cytokine independency. RESULTS: One dog presented with a three-base change in codons 617 and 618 of JAK2 giving rise to V617F and C618L mutations. By polymerase chain reaction product subcloning, we demonstrated the coexistence of the wild-type sequence and a triple mutant sequence, while DNA from buccal swab contained the wild-type sequence only. Transfection of BaF3 cells with the triple mutant cDNA, but not with the wild-type complementary DNA, resulted in cytokine-independent growth and constitutive signal transducer and activation of transcription 5 phosphorylation. CONCLUSIONS: Identical mutations of the JAK2 gene occur in humans and dogs, giving rise to a constitutively active JAK2 kinase, suggesting a common mechanism for human and canine diseases. Thus, common diagnostic tools and therapeutic approaches may be relevant.


Subject(s)
Dog Diseases/genetics , Janus Kinase 2/genetics , Polycythemia/veterinary , Animals , Dogs , Exons , Mutation , Polycythemia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...