Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
J Biol Chem ; : 107374, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762180

ABSTRACT

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration molecular mechanisms performed by intasomes (complexes containing viral DNA, IN and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.

2.
Nat Commun ; 15(1): 640, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245532

ABSTRACT

Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Virus Replication , DNA Helicases/metabolism , Proteomics , RNA Recognition Motif Proteins/metabolism , COVID-19/metabolism , RNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Virus Assembly , Virion/metabolism
3.
Sci Adv ; 10(2): eadj3498, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215203

ABSTRACT

Integrons are adaptive bacterial devices that rearrange promoter-less gene cassettes into variable ordered arrays under stress conditions, thereby sampling combinatorial phenotypic diversity. Chromosomal integrons often carry hundreds of silent gene cassettes, with integrase-mediated recombination leading to rampant DNA excision and integration, posing a potential threat to genome integrity. How this activity is regulated and controlled, particularly through selective pressures, to maintain such large cassette arrays is unknown. Here, we show a key role of promoter-containing toxin-antitoxin (TA) cassettes as systems that kill the cell when the overall cassette excision rate is too high. These results highlight the importance of TA cassettes regulating the cassette recombination dynamics and provide insight into the evolution and success of integrons in bacterial genomes.


Subject(s)
Integrons , Toxin-Antitoxin Systems , Integrons/genetics , Toxin-Antitoxin Systems/genetics , Bacteria/genetics , Genome, Bacterial , Recombination, Genetic
4.
Nat Microbiol ; 9(1): 228-240, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172619

ABSTRACT

Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.


Subject(s)
Genome, Bacterial , Integrons , Integrons/genetics , Bacteria/genetics , Bacteria/metabolism , Integrases/genetics , Integrases/metabolism , Genomics
5.
Viruses ; 14(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35891378

ABSTRACT

Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.


Subject(s)
HIV Integrase , HIV-1 , DNA, Viral , HIV Integrase/metabolism , HIV-1/chemistry , Humans , Proviruses/genetics , Reverse Transcription , Virus Integration
6.
Trends Microbiol ; 30(12): 1217-1231, 2022 12.
Article in English | MEDLINE | ID: mdl-35902318

ABSTRACT

Viruses rely on the reprogramming of cellular processes to enable efficient viral replication; this often requires subcompartmentalization within the host cell. Liquid-liquid phase separation (LLPS) has emerged as a fundamental principle to organize and subdivide cellular processes, and plays an important role in viral life cycles. Despite substantial advances in the field, elucidating the exact organization and function of these organelles remains a major challenge. In this review, we summarize the biochemical basis of condensate formation, the role of LLPS during viral infection, and interplay of LLPS with innate immune responses. Finally, we discuss possible strategies and molecules to modulate LLPS during viral infections.


Subject(s)
Organelles , Virus Diseases , Humans , Organelles/chemistry , Organelles/metabolism , Virus Replication , Virus Diseases/metabolism
7.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35861550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Protein Binding , Pyridines/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
8.
J Virol ; 96(14): e0067622, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35758669

ABSTRACT

Integration of the reverse-transcribed genome is a critical step of the retroviral life cycle. Strand-transfer inhibitors (INSTIs) used for antiretroviral therapy inhibit integration but can lead to resistance mutations in the integrase gene, the enzyme involved in this reaction. A significant proportion of INSTI treatment failures, particularly those with second-generation INSTIs, show no mutation in the integrase gene. Here, we show that replication of a selected dolutegravir-resistant virus with mutations in the 3'-PPT (polypurine tract) was effective, although no integrated viral DNA was detected, due to the accumulation of unintegrated viral DNA present as 1-LTR circles. Our results show that mutation in the 3'-PPT leads to 1-LTR circles and not linear DNA as classically reported. In conclusion, our data provide a molecular basis to explain a new mechanism of resistance to INSTIs, without mutation of the integrase gene and highlights the importance of unintegrated viral DNA in HIV-1 replication. IMPORTANCE Our work highlights the role of HIV-1 unintegrated viral DNA in viral replication. A virus, resistant to strand-transfer inhibitors, has been selected in vitro. This virus highlights a mutation in the 3'PPT region and not in the integrase gene. This mutation modifies the reverse transcription step leading to the accumulation of 1-LTR circles and not the linear DNA. This accumulation of 1-LTR circles leads to viral replication without integration of the viral genome.


Subject(s)
DNA, Viral , HIV-1 , Mutation , Virus Integration , Virus Replication , DNA, Viral/genetics , HIV Infections/virology , HIV-1/genetics , Humans , Virus Integration/genetics , Virus Replication/genetics
9.
Retrovirology ; 19(1): 8, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590338
10.
mBio ; 13(2): e0173321, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35343785

ABSTRACT

The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.


Subject(s)
Nucleosomes , Viral Proteins , Chromatin , Histones/metabolism , Viral Proteins/metabolism
11.
Nucleic Acids Res ; 49(19): 11241-11256, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34634812

ABSTRACT

The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromatin/metabolism , HIV Integrase/genetics , Histones/genetics , Host-Pathogen Interactions/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Chromatin/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HIV Integrase/metabolism , Histones/metabolism , Humans , K562 Cells , Primary Cell Culture , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Transcription Factors/metabolism
12.
Nucleic Acids Res ; 49(10): 5654-5670, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34048565

ABSTRACT

Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.


Subject(s)
Chromosomes/metabolism , Gene Transfer, Horizontal/genetics , Integrases/metabolism , Integrons/genetics , Vibrio cholerae/metabolism , Chromosomes/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Integrases/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Recombination, Genetic/genetics , Vibrio cholerae/genetics
13.
Viruses ; 13(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33669132

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Productive SARS-CoV-2 infection relies on viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). Indeed, viral entry into cells is mostly mediated by the early interaction between the viral spike protein S and its ACE2 receptor. The S/ACE2 complex is, thus, the first contact point between the incoming virus and its cellular target; consequently, it has been considered an attractive therapeutic target. To further characterize this interaction and the cellular processes engaged in the entry step of the virus, we set up various in silico, in vitro and in cellulo approaches that allowed us to specifically monitor the S/ACE2 association. We report here a computational model of the SARS-CoV-2 S/ACE2 complex, as well as its biochemical and biophysical monitoring using pulldown, AlphaLISA and biolayer interferometry (BLI) binding assays. This led us to determine the kinetic parameters of the S/ACE2 association and dissociation steps. In parallel to these in vitro approaches, we developed in cellulo transduction assays using SARS-CoV-2 pseudotyped lentiviral vectors and HEK293T-ACE2 cell lines generated in-house. This allowed us to recapitulate the early replication stage of the infection mediated by the S/ACE2 interaction and to detect cell fusion induced by the interaction. Finally, a cell imaging system was set up to directly monitor the S/ACE2 interaction in a cellular context and a flow cytometry assay was developed to quantify this association at the cell surface. Together, these different approaches are available for both basic and clinical research, aiming to characterize the entry step of the original SARS-CoV-2 strain and its variants as well as to investigate the possible chemical modulation of this interaction. All these models will help in identifying new antiviral agents and new chemical tools for dissecting the virus entry step.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/metabolism , Computer Simulation , HEK293 Cells , Humans , In Vitro Techniques , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Domains , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry
14.
Viruses ; 11(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443391

ABSTRACT

Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines, bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat (LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade, a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here, we review the biochemistry and the structural features of the FV integration apparatus and will also discuss the mechanism of action of strand transfer inhibitors.


Subject(s)
Integrases , Spumavirus , Virus Integration , Animals , Anti-Retroviral Agents/chemistry , Anti-Retroviral Agents/pharmacology , Catalytic Domain , DNA, Viral/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Integrase Inhibitors/chemistry , Integrase Inhibitors/pharmacology , Integrases/chemistry , Integrases/metabolism , Models, Molecular , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Retroviridae/genetics , Retroviridae/metabolism , Spumavirus/genetics , Spumavirus/metabolism , Terminal Repeat Sequences
15.
Nucleic Acids Res ; 47(11): 5511-5521, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31073604

ABSTRACT

Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.


Subject(s)
Amides/chemistry , DNA Topoisomerases, Type I/chemistry , DNA, B-Form/chemistry , HIV Integrase Inhibitors/chemistry , HIV Integrase/chemistry , Biocatalysis , Biomimetic Materials/chemistry , Crystallography, X-Ray , HIV Integrase Inhibitors/chemical synthesis , HIV-1/enzymology , Humans , Molecular Structure , Protein Conformation , Solid-Phase Synthesis Techniques
16.
J Biol Chem ; 294(20): 8286-8295, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30971426

ABSTRACT

Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway. These DNAs contain all the genetic information required for viral replication, but their role in HIV-1's life cycle remains unknown. We previously showed that both linear and circular DNA fragments containing the 2-LTR palindrome junction can be efficiently cleaved in vitro by recombinant integrases, leading to the formation of linear 3'-processed-like DNA. In this report, using in vitro experiments with purified proteins and DNAs along with DNA endonuclease and in vivo integration assays, we show that this circularized genome can also be efficiently used as a substrate in HIV-1 integrase-mediated integration both in vitro and in eukaryotic cells. Notably, we demonstrate that the palindrome cleavage occurs via a two-step mechanism leading to a blunt-ended DNA product, followed by a classical 3'-processing reaction; this cleavage leads to integrase-dependent integration, highlighted by a 5-bp duplication of the host genome. Our results suggest that 2-LTRc may constitute a reserve supply of HIV-1 genomes for proviral integration.


Subject(s)
DNA, Circular/chemistry , DNA, Viral/chemistry , HIV Integrase/chemistry , HIV Long Terminal Repeat , HIV-1/chemistry , Virus Integration , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , HIV Integrase/genetics , HIV Integrase/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans
17.
Nucleic Acids Res ; 47(7): 3607-3618, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30767014

ABSTRACT

The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)•viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA). Both prototype foamy virus (PFV) and HIV-1 integrases can directly bind histone amino-terminal tails. We have further investigated this final association by studying the effect of isolated histone tails on HIV-1 integration. We show here that the binding of HIV-1 IN to a peptide derived from the H4 tail strongly stimulates integration catalysis in vitro. This stimulation was not observed with peptide tails from other variants or with alpha-retroviral (RAV) and spuma-retroviral PFV integrases. Biochemical analyses show that the peptide tail induces both an increase in the IN oligomerization state and affinity for the target DNA, which are associated with substantial structural rearrangements in the IN carboxy-terminal domain (CTD) observed by NMR. Our data indicate that the H4 peptide tail promotes the formation of active strand transfer complexes (STCs) and support an activation step of the incoming intasome at the contact of the histone tail.


Subject(s)
HIV Integrase/genetics , HIV-1/genetics , Histones/genetics , Virus Integration/genetics , Catalysis , Chromatin/genetics , Chromatin/virology , Genome, Viral/genetics , HIV-1/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Nucleosomes/genetics , Nucleosomes/virology , Spumavirus/genetics
18.
Microb Cell ; 5(12): 569-571, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30533422

ABSTRACT

The ability of retroviruses to integrate their genomes into host chromatin is a key step for the completion of their replication cycle. Selection of a suitable chromosomal integration site has been described as a hierarchical mechanism involving both cellular and viral proteins but the exact molecular determinants are still unclear. We recently showed that the spumaretrovirus prototype foamy virus (PFV) Gag protein is acting as a chromatin tether by interacting with the nucleosome acidic patch (Lesbats et al. PNAS 114(21)). Disruption of the nucleosome binding leads to a dramatic delocalization of both the viral particles and the integration sites accompanied with a reduction of integrated genes expression. These data show for the first time a direct interaction between retroviral structural proteins with the host chromosomes, and highlight their importance in the integration sites selection.

19.
Nat Chem ; 10(5): 511-518, 2018 05.
Article in English | MEDLINE | ID: mdl-29610464

ABSTRACT

Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.


Subject(s)
Amides/chemistry , DNA, B-Form/chemistry , Nucleic Acid Conformation , Surface Properties
20.
Retrovirology ; 14(1): 54, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29179726

ABSTRACT

BACKGROUND: Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. RESULTS: We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. CONCLUSIONS: Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin.


Subject(s)
HIV Integrase/metabolism , HIV-1/metabolism , Histones/metabolism , Nucleosomes/metabolism , Virus Integration , Cell Line, Transformed , Chromatin/virology , DNA, Viral/metabolism , HEK293 Cells , HIV-1/genetics , Histones/chemistry , Host-Parasite Interactions/physiology , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...