Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biophys Rev (Melville) ; 5(1): 010401, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505297
2.
APL Bioeng ; 7(4): 046118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075209

ABSTRACT

Modeling multiscale mechanics in shape-shifting engineered tissues, such as organoids and organs-on-chip, is both important and challenging. In fact, it is difficult to model relevant tissue-level large non-linear deformations mediated by discrete cell-level behaviors, such as migration and proliferation. One approach to solve this problem is subcellular element modeling (SEM), where ensembles of coarse-grained particles interacting via empirically defined potentials are used to model individual cells while preserving cell rheology. However, an explicit treatment of multiscale mechanics in SEM was missing. Here, we incorporated analyses and visualizations of particle level stress and strain in the open-source software SEM++ to create a new framework that we call subcellular element modeling and mechanics or SEM2. To demonstrate SEM2, we provide a detailed mechanics treatment of classical SEM simulations including single-cell creep, migration, and proliferation. We also introduce an additional force to control nuclear positioning during migration and proliferation. Finally, we show how SEM2 can be used to model proliferation in engineered cell culture platforms such as organoids and organs-on-chip. For every scenario, we present the analysis of cell emergent behaviors as offered by SEM++ and examples of stress or strain distributions that are possible with SEM2. Throughout the study, we only used first-principles literature values or parametric studies, so we left to the Discussion a qualitative comparison of our insights with recently published results. The code for SEM2 is available on GitHub at https://github.com/Synthetic-Physiology-Lab/sem2.

3.
Biophys Rev (Melville) ; 4(4): 041301, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38510845

ABSTRACT

In this paper, we review a powerful methodology to solve complex numerical simulations, known as isogeometric analysis, with a focus on applications to the biophysical modeling of the heart. We focus on the hemodynamics, modeling of the valves, cardiac tissue mechanics, and on the simulation of medical devices and treatments. For every topic, we provide an overview of the methods employed to solve the specific numerical issue entailed by the simulation. We try to cover the complete process, starting from the creation of the geometrical model up to the analysis and post-processing, highlighting the advantages and disadvantages of the methodology.

5.
Adv Sci (Weinh) ; 7(12): 2000173, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596117

ABSTRACT

Alterations of blood flow patterns strongly correlate with arterial wall diseases such as atherosclerosis and aneurysm. Here, a simple, pumpless, close-loop, easy-to-replicate, and miniaturized flow device is introduced to concurrently expose 3D engineered vascular smooth muscle tissues to high-velocity pulsatile flow versus low-velocity disturbed flow conditions. Two flow regimes are distinguished, one that promotes elastin and impairs collagen I assembly, while the other impairs elastin and promotes collagen assembly. This latter extracellular matrix (ECM) composition shares characteristics with aneurysmal or atherosclerotic tissue phenotypes, thus recapitulating crucial hallmarks of flow-induced tissue morphogenesis in vessel walls. It is shown that the mRNA levels of ECM of collagens and elastin are not affected by the differential flow conditions. Instead, the differential gene expression of matrix metalloproteinase (MMP) and their inhibitors (TIMPs) is flow-dependent, and thus drives the alterations in ECM composition. In further support, treatment with doxycycline, an MMP inhibitor and a clinically used drug to treat vascular diseases, halts the effect of low-velocity flow on the ECM remodeling. This illustrates how the platform can be exploited for drug efficacy studies by providing crucial mechanistic insights into how different therapeutic interventions may affect tissue growth and ECM assembly.

6.
Circulation ; 140(5): 390-404, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31311300

ABSTRACT

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Tissue Engineering/methods , Action Potentials/physiology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/chemistry , Myocytes, Cardiac/chemistry , Optogenetics/methods
7.
PLoS One ; 13(3): e0194706, 2018.
Article in English | MEDLINE | ID: mdl-29590169

ABSTRACT

Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.


Subject(s)
Mechanotransduction, Cellular , Microscopy, Atomic Force/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Stress, Mechanical , Tissue Engineering/methods , Animals , Animals, Newborn , Cells, Cultured , Rats , Rats, Sprague-Dawley
8.
Nat Biomed Eng ; 2(12): 930-941, 2018 12.
Article in English | MEDLINE | ID: mdl-31015723

ABSTRACT

Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 µl (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50-250 times smaller and 104-108 times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure-volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.


Subject(s)
Heart Ventricles/cytology , Models, Biological , Tissue Engineering , Animals , Arrhythmias, Cardiac/pathology , Computer-Aided Design , Extracellular Matrix/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocardial Contraction , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nanofibers/chemistry , Polymers/chemistry , Rats , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Ventricular Function
9.
Biomaterials ; 133: 229-241, 2017 07.
Article in English | MEDLINE | ID: mdl-28445803

ABSTRACT

Tissue engineered scaffolds have emerged as a promising solution for heart valve replacement because of their potential for regeneration. However, traditional heart valve tissue engineering has relied on resource-intensive, cell-based manufacturing, which increases cost and hinders clinical translation. To overcome these limitations, in situ tissue engineering approaches aim to develop scaffold materials and manufacturing processes that elicit endogenous tissue remodeling and repair. Yet despite recent advances in synthetic materials manufacturing, there remains a lack of cell-free, automated approaches for rapidly producing biomimetic heart valve scaffolds. Here, we designed a jet spinning process for the rapid and automated fabrication of fibrous heart valve scaffolds. The composition, multiscale architecture, and mechanical properties of the scaffolds were tailored to mimic that of the native leaflet fibrosa and assembled into three dimensional, semilunar valve structures. We demonstrated controlled modulation of these scaffold parameters and show initial biocompatibility and functionality in vitro. Valves were minimally-invasively deployed via transapical access to the pulmonary valve position in an ovine model and shown to be functional for 15 h.


Subject(s)
Biocompatible Materials , Biomimetics/methods , Heart Valves/surgery , Tissue Scaffolds , Animals , Heart Valve Prosthesis , Nanofibers , Sheep , Tissue Engineering/methods
10.
Biomaterials ; 122: 48-62, 2017 04.
Article in English | MEDLINE | ID: mdl-28107664

ABSTRACT

To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking. Importantly, also no data from large animals or for other indications are available. Therefore, we here investigate the therapeutic-efficacy of human cardiopoietic stem cells in the treatment of post-infarction LV-dysfunction using a translational pig-model. Using growth-factor priming, lineage-specification of human bone-marrow derived MSCs was achieved to generate cardiopoietic stem cells according to GMP-compliant protocols. Thereafter, pigs with post-infarction LV-dysfunction (sub-acute phase;1-month) were randomized to either receive transcatheter NOGA 3D electromechanical-mapping guided intramyocardial transplantation of cardiopoietic cells or saline (control). After 30days, cardiac MRI (cMRI) was performed for functional evaluation and in-vivo cell-tracking. This approach was coupled with a comprehensive post-mortem cell-fate and mode-of-repair analysis. Cardiopoietic cell therapy was safe and ejection-fraction was significantly higher when compared to controls (p = 0.012). It further prevented maladaptive LV-remodeling and revealed a significantly lower relative and total infarct-size (p = 0.043 and p = 0.012). As in-vivo tracking and post-mortem analysis displayed only limited intramyocardial cardiopoietic cell-integration, the significant induction of neo-angiogenesis (∼40% higher; p = 0.003) and recruitment of endogenous progenitors (∼2.5x higher; p = 0.008) to the infarct border-zone appeared to be the major modes-of-repair. This is the first report using a pre-clinical large animal-model to demonstrate the safety and efficacy of cardiopoietic stem cells for the treatment of post-infarction LV-dysfunction to prevent negative LV-remodeling and subsequent CHF. It further provides insight into post-delivery cardiopoietic cell-fate and suggests the mechanisms of cardiopoietic cell-induced cardiac-repair. The adoption of GMP-/GLP-compliant methodologies may accelerate the translation into a phase-I clinical-trial in patients with post-ischemic LV-dysfunction broadening the current indication of this interesting cell-type.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/therapy , Animals , Mesenchymal Stem Cell Transplantation/adverse effects , Myocardial Infarction/complications , Recovery of Function , Swine , Treatment Outcome , Ventricular Dysfunction, Left/etiology , Ventricular Remodeling
11.
NPJ Regen Med ; 2: 17, 2017.
Article in English | MEDLINE | ID: mdl-29302353

ABSTRACT

Acute myocardial infarction and chronic heart failure rank among the major causes of morbidity and mortality worldwide. Except for heart transplantation, current therapy options only treat the symptoms but do not cure the disease. Stem cell-based therapies represent a possible paradigm shift for cardiac repair. However, most of the first-generation approaches displayed heterogeneous clinical outcomes regarding efficacy. Stemming from the desire to closely match the target organ, second-generation cell types were introduced and rapidly moved from bench to bedside. Unfortunately, debates remain around the benefit of stem cell therapy, optimal trial design parameters, and the ideal cell type. Aiming at highlighting controversies, this article provides a critical overview of the translation of first-generation and second-generation cell types. It further emphasizes the importance of understanding the mechanisms of cardiac repair and the lessons learned from first-generation trials, in order to improve cell-based therapies and to potentially finally implement cell-free therapies.

12.
Nat Mater ; 16(3): 303-308, 2017 03.
Article in English | MEDLINE | ID: mdl-27775708

ABSTRACT

Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.


Subject(s)
Myocardium/cytology , Printing, Three-Dimensional/instrumentation , Tissue Array Analysis/instrumentation
13.
Transfus Med Hemother ; 43(4): 282-290, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27721704

ABSTRACT

The incidence of severe valvular dysfunctions (e.g., stenosis and insufficiency) is increasing, leading to over 300,000 valves implanted worldwide yearly. Clinically used heart valve replacements lack the capacity to grow, inherently requiring repetitive and high-risk surgical interventions during childhood. The aim of this review is to present how different tissue engineering strategies can overcome these limitations, providing innovative valve replacements that proved to be able to integrate and remodel in pre-clinical experiments and to have promising results in clinical studies. Upon description of the different types of heart valve tissue engineering (e.g., in vitro, in situ, in vivo, and the pre-seeding approach) we focus on the clinical translation of this technology. In particular, we will deepen the many technical, clinical, and regulatory aspects that need to be solved to endure the clinical adaptation and the commercialization of these promising regenerative valves.

14.
J Cell Biol ; 215(1): 47-56, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27697929

ABSTRACT

Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling.


Subject(s)
Models, Biological , Muscle Contraction , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Actins/metabolism , Anisotropy , Cell Differentiation , Cell Nucleus/metabolism , Cell Nucleus Shape , Child, Preschool , Cytoskeleton/metabolism , Humans , Muscle Fibers, Skeletal/pathology , Myoblasts/pathology , Tissue Engineering , Tongue
15.
Science ; 353(6295): 158-62, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27387948

ABSTRACT

Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.


Subject(s)
Light , Robotics , Skates, Fish/physiology , Swimming/physiology , Tissue Engineering , Animal Fins/physiology , Animals , Biomechanical Phenomena , Cues , Muscle, Skeletal/physiology , Optogenetics
16.
J Cell Biol ; 212(4): 389-97, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26858266

ABSTRACT

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (µtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of µtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.


Subject(s)
Cell Communication , Myocardial Contraction , Myocytes, Cardiac/physiology , Stem Cells/physiology , Tissue Engineering/methods , Animals , Animals, Newborn , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Computer Simulation , Focal Adhesions/metabolism , Mechanotransduction, Cellular , Mice , Mice, Inbred BALB C , Models, Cardiovascular , Myocytes, Cardiac/transplantation , Phenotype , Primary Cell Culture , Stem Cell Transplantation , Stress, Mechanical , Time Factors
17.
PLoS One ; 11(1): e0146415, 2016.
Article in English | MEDLINE | ID: mdl-26808388

ABSTRACT

In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.


Subject(s)
Angiotensin II/pharmacology , Gene Expression/drug effects , Myocytes, Cardiac/drug effects , Ventricular Remodeling/drug effects , Animals , Gene Expression Profiling , Models, Theoretical , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Rats
18.
Biomed Res Int ; 2016: 4081638, 2016.
Article in English | MEDLINE | ID: mdl-28044126

ABSTRACT

Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.


Subject(s)
Mechanotransduction, Cellular/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Animals , Energy Metabolism/physiology , Excitation Contraction Coupling/physiology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , Mitochondria/metabolism , Mitochondria/physiology , Protein Processing, Post-Translational/physiology , Sarcoplasmic Reticulum/physiology
19.
J Mater Chem B ; 4(20): 3534-3543, 2016 May 28.
Article in English | MEDLINE | ID: mdl-32263387

ABSTRACT

Pharmaceutical screening based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and multi electrode arrays (MEAs) have been proposed as a complementary method for electrophysiological safety and efficacy assessment in drug discovery and development. Contrary to animal models, these cells offer a human genetic background but, at present, fail to recapitulate the mechanical and structural properties of the native human myocardium. Here, we report that topographical cues on soft micromolded gelatin can coax hiPSC-CMs to form laminar cardiac tissues that resemble the native architecture of the heart. Importantly, using this method we were able to record tissue-level electrophysiological responses with a commercially available MEA setup. To validate this platform, we recorded cardiac field potentials at baseline and after pharmacological interventions with a ß-adrenergic agonist (isoproterenol). Further, we tested the ability of our system to predict the response of laminar human cardiac tissues to a cardiotoxic pro-drug (terfenadine) and its non-cardiotoxic metabolite (fexofenadine). Finally, we integrated our platform with microfluidic components to build a heart-on-a-chip system that can be fluidically linked with other organs-on-chips in the future.

20.
Nat Commun ; 6: 8803, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26541940

ABSTRACT

The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na(+) current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca(2+) cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca(2+) transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly.


Subject(s)
Action Potentials , Aging/metabolism , Calcium/metabolism , Cardiomyopathies/metabolism , Heart Ventricles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium/metabolism , Animals , Cardiomyopathies/physiopathology , Collagen , Disease Models, Animal , Heart/physiopathology , Heart Ventricles/physiopathology , Mice , Mice, Knockout , Myocardial Contraction , Patch-Clamp Techniques , Voltage-Gated Sodium Channel beta-1 Subunit/genetics , Voltage-Gated Sodium Channel beta-1 Subunit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...