Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(19): e2301124, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098646

ABSTRACT

The helicity of three-dimensional (3D) topological insulator surface states has drawn significant attention in spintronics owing to spin-momentum locking where the carriers' spin is oriented perpendicular to their momentum. This property can provide an efficient method to convert charge currents into spin currents, and vice-versa, through the Rashba-Edelstein effect. However, experimental signatures of these surface states to the spin-charge conversion are extremely difficult to disentangle from bulk state contributions. Here, spin- and angle-resolved photo-emission spectroscopy, and time-resolved THz emission spectroscopy are combined to categorically demonstrate that spin-charge conversion arises mainly from the surface state in Bi1 - x Sbx ultrathin films, down to few nanometers where confinement effects emerge. This large conversion efficiency is correlated, typically at the level of the bulk spin Hall effect from heavy metals, to the complex Fermi surface obtained from theoretical calculations of the inverse Rashba-Edelstein response. Both surface state robustness and sizeable conversion efficiency in epitaxial Bi1 - x Sbx thin films bring new perspectives for ultra-low power magnetic random-access memories and broadband THz generation.

2.
Nanotechnology ; 34(26)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36975178

ABSTRACT

The nanoscale intrinsic electrical properties of in-plane InAs nanowires grown by selective area epitaxy are investigated using a process-free method involving a multi-probe scanning tunneling microscope. The resistance of oxide-free InAs nanowires grown on an InP(111)Bsubstrate and the resistance of InAs/GaSb core-shell nanowires grown on an InP(001) substrate are measured using a collinear four-point probe arrangement in ultrahigh vacuum. They are compared with the resistance of two-dimensional electron gas reference samples measured using the same method and with the Van der Pauw geometry for validation. A significant improvement of the conductance is achieved when the InAs nanowires are fully embedded in GaSb, exhibiting an intrinsic sheet conductance close to the one of the quantum well counterpart.

3.
Opt Express ; 30(25): 45259-45266, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522932

ABSTRACT

Silicon (Si) photonics can have a major impact on the development of mid-IR photonics by leveraging on the reliable and high-volume fabrication technologies already developed for microelectronic integrated circuits. Germanium (Ge), already used in Si photonics, is a prime candidate to extend the operating wavelength of Group IV-based photonic integrated circuits beyond 8 µm, and potentially up to 15 µm. High performance quantum cascade lasers (QCLs) and interband cascade lasers grown on Si have been demonstrated, whereas no QCLs monolithically integrated on Ge have been reported yet. In this work, we present InAs-based QCLs directly grown on Ge by molecular beam epitaxy. The lasers emitting near 14 µm exhibited threshold current densities as low as 0.8-0.85 kA/cm2 at room temperature.

4.
Opt Express ; 30(3): 3954-3961, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209643

ABSTRACT

GeSn alloys are the most promising direct band gap semiconductors to demonstrate full CMOS-compatible laser integration with a manufacturing from Group-IV materials. Here, we show that room temperature lasing, up to 300 K, can be obtained with GeSn. This is achieved in microdisk resonators fabricated on a GeSn-On-Insulator platform by combining strain engineering with a thick layer of high Sn content GeSn.

5.
Nanotechnology ; 33(14)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34937011

ABSTRACT

In-plane InGaAs/Ga(As)Sb heterojunction tunnel diodes are fabricated by selective area molecular beam epitaxy with two different architectures: either radial InGaAs core/Ga(As)Sb shell nanowires or axial InGaAs/GaSb heterojunctions. In the former case, we unveil the impact of strain relaxation and alloy composition fluctuations at the nanoscale on the tunneling properties of the diodes, whereas in the latter case we demonstrate that template assisted molecular beam epitaxy can be used to achieve a very precise control of tunnel diodes dimensions at the nanoscale with a scalable process. In both cases, negative differential resistances with large peak current densities are achieved.

6.
Ultramicroscopy ; 220: 113152, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33142196

ABSTRACT

Atomically-resolved mappings of the indium composition in InGaN/GaN multi-quantum well structures have been obtained by quantifying the contrast in HAADF-STEM. The quantification procedure presented here does not rely on computation-intensive simulations, but rather uses EDX measurements to calibrate the HAADF-STEM contrast. The histogram of indium compositions obtained from the mapping provides unique insights into the growth of InGaN: the transition from GaN to InGaN and vice versa occurs in discreet increments of composition; each increment corresponds to one monolayer of the interface, indicating that nucleation takes longer than the lateral growth of the step. Strain-state analysis is also performed by applying Peak-Pair Analysis to the positions of the atomic columns identified the quantification of the contrast. The strain mappings yield an estimate of the composition in good agreement with the one obtained from quantified HAADF-STEM, albeit with a lower precision. Possible improvements to increase the precision of the strain mappings are discussed, opening potential pathways for the quantification of arbitrary quaternary alloys at atomic scales.

7.
Nanotechnology ; 31(35): 354003, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32428880

ABSTRACT

A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on controlling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 µm-2 to <0.1 µm-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon. .

8.
Nanoscale Adv ; 2(5): 2127-2134, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132505

ABSTRACT

It is well known that the crystalline structure of the III-V nanowires (NWs) is mainly controlled by the wetting contact angle of the catalyst droplet which can be tuned by the III and V flux. In this work we present a method to control the wurtzite (WZ) or zinc-blende (ZB) structure in self-catalyzed GaAs NWs grown by molecular beam epitaxy, using in situ reflection high energy electron diffraction (RHEED) diagram analysis. Since the diffraction patterns of the ZB and WZ structures differ according to the azimuth [11̄0], it is possible to follow the evolution of the intensity of specific ZB and WZ diffraction spots during NW growth as a function of the growth parameters such as the Ga flux. By analyzing the evolution of the WZ and ZB spot intensities during NW growth with specific changes of the Ga flux, it is then possible to control the crystal structure of the NWs. ZB GaAs NWs with a controlled WZ segment have thus been realized. Using a semi-empirical model for the NW growth and our in situ RHEED measurements, the critical wetting angle of the Ga catalyst droplet for the structural transition is deduced.

9.
Nanotechnology ; 30(30): 304001, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-30965307

ABSTRACT

We report on the structural and optical properties of GaAs0.7P0.3/GaP core-shell nanowires (NWs) for future photovoltaic applications. The NWs are grown by self-catalyzed molecular beam epitaxy. Scanning transmission electron microscopy (STEM) analyses demonstrate that the GaAsP NW core develops an inverse-tapered shape with a formation of an unintentional GaAsP shell having a lower P content. Without surface passivation, this unintentional shell produces no luminescence because of strong surface recombination. However, passivation of the surface with a GaP shell leads to the appearance of a secondary peak in the luminescence spectrum arising from this unintentional shell. The attribution of the luminescence peaks is confirmed by correlated cathodoluminescence and STEM analyses of the same NW.

10.
Nanoscale Adv ; 1(7): 2718-2726, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-36132737

ABSTRACT

Understanding the physical and chemical mechanisms occurring during the forming process and operation of an organic resistive memory device is a requisite for better performance. Various mechanisms were suggested in vertically stacked memory structures, but the analysis remains indirect and needs destructive characterization (e.g. analysis of the cross-section to access the organic layers sandwiched between electrodes). Here, we report a study on a planar, monolayer thick, hybrid nanoparticle/molecule device (10 nm gold nanoparticles embedded in an electro-generated poly(2-thienyl-3,4-(ethylenedioxy)thiophene) layer), combining in situ physical (scanning electron microscopy, physicochemical thermogravimetry and mass spectroscopy, and Raman spectroscopy) and electrical (temperature dependent current-voltage) characterization on the same device. We demonstrate that the forming process causes an increase in the gold particle size, almost 4 times larger than the starting nanoparticles, and that the organic layer undergoes a significant chemical rearrangement from an sp3 to sp2 amorphous carbon material. Temperature dependent electrical characterization of this nonvolatile memory confirms that the charge transport mechanism in the device is consistent with a trap-filled space charge limited current in the off state, with the sp2 amorphous carbon material containing many electrically active defects.

11.
Nanotechnology ; 30(8): 084005, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30524074

ABSTRACT

With a band gap value of 1.7 eV, Al0.2Ga0.8As is one of the ideal III-V alloys for the development of nanowire-based Tandem Solar Cells on silicon. Nevertheless, growing self-catalysed AlGaAs nanowires on silicon by solid-source molecular beam epitaxy is a very difficult task due to the oxidation of Al adatoms by the SiO2 layer present on the surface. Here we propose a nanowire structure including a p.i.n radial junction inside an Al0.2Ga0.8As shell grown on a p-GaAs core. The crystalline structure of such self-catalysed nanowires grown on an epi-ready Si(111) substrate (with a thin native SiO2 layer) was investigated by transmission electronic microscopy and photoluminescence. I(V) measurements performed on single nanowires have shown a diode-like behaviour corresponding to the radial p.i.n junction inside the Al0.2Ga0.8As shell. Moreover, a current generation under the electron beam was evidenced over the entire radial junction along the nanowires by means of electron beam induced current (EBIC) microscopy. The same structure was reproduced on patterned substrates with a SiO2 mask, producing an ordered hexagonal array. High and uniform yields from 83% to 87% of vertical nanowires were obtained on 0.9 × 0.9 cm2 patterned areas. EBIC mapping performed on these nanowires confirmed the good electrical properties of the radial junction within the nanowires.

12.
Nanotechnology ; 29(30): 305705, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-29738312

ABSTRACT

In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.

13.
Nanotechnology ; 29(12): 125601, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29328052

ABSTRACT

We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

14.
J Phys Condens Matter ; 29(48): 485706, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29120866

ABSTRACT

The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

15.
Nanotechnology ; 28(49): 495707, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29057754

ABSTRACT

We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

16.
Nanotechnology ; 27(50): 505301, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27861165

ABSTRACT

The growth of in-plane GaSb nanotemplates on a GaAs (001) substrate is demonstrated combining nanoscale patterning of the substrate and selective area heteroepitaxy. The selective growth of GaSb inside nano-stripe openings in a SiO2 mask layer is achieved at low temperature thanks to the use of an atomic hydrogen flux during the molecular beam epitaxy. These growth conditions promote the spreading of GaSb inside the apertures and lattice mismatch accommodation via the formation of a regular array of misfit dislocations at the interface between GaSb and GaAs. We highlight the impact of the nano-stripe orientation as well as the role of the Sb/Ga flux ratio on the strain relaxation of GaSb along the [110] direction and on the nanowire length along the [1-10] one. Finally we demonstrate how these GaSb nanotemplates can be used as pedestals for subsequent growth of in-plane InAs nanowires.

17.
J Chem Phys ; 145(15): 154702, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27782451

ABSTRACT

Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

18.
J Labelled Comp Radiopharm ; 59(4): 175-86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26991121

ABSTRACT

The 24th annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK on Friday 6th November 2015. The meeting was attended by 77 delegates from academia and industry, the life sciences, chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral presentations, short 'flash' presentations in association with particular posters and poster presentations. The scientific areas covered included isotopic synthesis, regulatory issues, applications of labelled compounds in imaging, isotopic separation and novel chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium was divided into a morning session chaired by Dr Rebekka Hueting (University of Oxford, UK) and afternoon sessions chaired by Dr Sofia Pascu (University of Bath, UK) and by Dr Alan Dowling (Syngenta, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK).

19.
Nanotechnology ; 27(11): 115602, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26878255

ABSTRACT

We report nano-selective area growth (NSAG) of BGaN by MOCVD on AlN/Si(111) and GaN templates resulting in 150 nm single crystalline nanopyramids. This is in contrast to unmasked or micro-selective area growth, which results in a multi-crystalline structure on both substrates. Various characterization techniques were used to evaluate NSAG as a viable technique to improve BGaN material quality on AlN/Si(111) using results of GaN NSAG and unmasked BGaN growth for comparison. Evaluation of BGaN nanopyramid quality, shape and size uniformity revealed that the growth mechanism is the same on both the templates. Further STEM analysis of BGaN nanopyramids on AlN/Si (111) templates confirmed that these are single-crystalline structures without any dislocations, likely due to single nucleation occurring in the 80 nm mask opening. CL results correspond to boron content between 1.7% and 2.0% in the nanopyramids. We conclude that NSAG is promising for growth of high-quality BGaN nanostructures and complex nano-heterostructures, especially for low-cost silicon substrates.

20.
Nanotechnology ; 27(11): 115707, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26878333

ABSTRACT

A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL