Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int. j. morphol ; 41(1): 286-296, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430539

ABSTRACT

SUMMARY: Cancer is the second leading cause of death in the world and colorectal cancer is the only cancer that has shown a sustained increase in mortality in the last decade. In the search for new chemotherapeutic agents against cancer, extremophilic microorganisms have shown to be a potential source to obtain molecules of natural origin and with selective cytotoxic action towards cancer cells. In this work we analyzed the ability of a collection of Antarctic soil bacteria, isolated on Collins Glacier from the rhizosphere of Deschampsia antarctica Desv plant, to secrete molecules capable of inhibiting cell proliferation of a colorectal cancer tumor line. Our results demonstrated that culture supernatants from the Antarctic bacteria K2I17 and MI12 decreased the viability of LoVo cells, a colorectal adenocarcinoma cell line. Phenotypic and genotypic characterization of the Antarctic bacteria showed that they were taxonomically related and nucleotide identity analysis based on the 16S rRNA gene sequence identified the bacterium K2I17 as a species belonging to the genus Bacillus.


El cáncer es la segunda causa de muerte en el mundo y el cáncer colorrectal es el único que presenta un aumento sostenido de la mortalidad en la última década. En la búsqueda de nuevos agentes quimioterapeúticos contra el cáncer, se ha propuesto a los microorganismos extremófilos como una fuente potencial para obtener moléculas de origen natural y con acción citotóxica selectiva hacia las células cancerígenas. En este trabajo analizamos la capacidad de una colección de bacterias de suelo antártico, aisladas en el glaciar Collins desde rizosfera de la planta de Deschampsia antarctica Desv, de secretar moléculas capaces de inhibir la proliferación celular de una línea tumoral de cáncer colorrectal. Nuestros resultados demostraron que los sobrenadantes de cultivo de las bacterias antárticas K2I17 y MI12 disminuyeron la viabilidad de la línea celular de adenocarcinoma colorrectal LoVo, en un ensayo de reducción metabólica de MTT. La caracterización fenotípica y genotípica de las bacterias antárticas, demostró que estaban relacionadas taxonómicamente y el análisis de la identidad nucleotídica en base a la secuencia del gen ARNr 16S identificó a la bacteria K2I17 como una especie perteneciente al género Bacillus.


Subject(s)
Humans , Soil Microbiology , Bacillus/physiology , Colorectal Neoplasms/drug therapy , Cell Proliferation/drug effects , Phenotype , Bacillus/isolation & purification , Bacillus/genetics , In Vitro Techniques , RNA, Ribosomal, 16S , Adenocarcinoma/drug therapy , Cell Survival/drug effects , Polymerase Chain Reaction , Cell Line, Tumor/drug effects , Genotype , Antarctic Regions
2.
Front Cell Infect Microbiol ; 12: 867446, 2022.
Article in English | MEDLINE | ID: mdl-35463633

ABSTRACT

Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.


Subject(s)
Bivalvia , Metals, Heavy , Microbiota , Agriculture , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Chile
3.
Int. j. morphol ; 40(5): 1276-1283, 2022. ilus, graf
Article in Spanish | LILACS | ID: biblio-1405294

ABSTRACT

RESUMEN: Las bacteriocinas son péptidos antimicrobianos de síntesis ribosomal secretadas por bacterias. Dentro de estas destaca nisina que posee potenciales usos en terapias antibióticas, como biopreservante de alimentos y probióticos. También se ha descrito que nisina posee citotoxicidad sobre líneas celulares neoplásicas, pero existe poca información de su efecto sobre células tumorales sanguíneas. Debido al potencial uso que presenta nisina, es relevante determinar la toxicidad que presenta sobre líneas celulares tumorales del tipo sanguíneo. Para esto, se realizaron ensayos de actividad hemolítica sobre eritrocitos humanos y de toxicidad sobre células mononucleares de sangre periférica humanas, determinándose que nisina no posee efecto citotóxico sobre este tipo de células normales humanas sanguíneas. Se realizaron también, ensayos de citotoxicidad con líneas celulares tumorales (K562 y U937), con el fin de determinar dosis, tiempo de exposición y selectividad en el efecto tóxico de nisina sobre las células tumorales humanas. Estos ensayos muestran que nisina presenta actividad citotóxica sobre líneas celulares K562 y U937 a las 72 h de exposición, a una concentración de 40 µg/mL, que corresponde a 100 veces la concentración mínima inhibitoria (MIC) usada para su acción sobre bacterias. Al comparar el efecto de nisina sobre células mononucleares de sangre periférica humanas con las líneas tumorales linfoides y mieloides (K562 y U937 respectivamente), se observa un efecto selectivo de nisina sobre las células tumorales sanguíneas.


SUMMARY: Bacteriocins are antimicrobial peptides of ribosomal synthesis secreted by bacteria. Among these, nisin stands out, which has potential uses in antibiotic therapies, as a food bio preservative and probiotics. Nisin has also been reported to have cytotoxicity on neoplastic cell lines, but there is little information on its effect on blood tumor cells. Due to the potential use that nisin presents, it is relevant to determine the toxicity it presents on tumor cell lines of the blood type. For this, hemolytic activity tests were carried out on human erythrocytes and toxicity on human peripheral blood mononuclear cells, determining that nisin does not have a toxic effect on this type of normal human blood cells. Cytotoxicity tests were also carried out with tumor cell lines (K562 and U937), to determine dose, exposure time and selectivity in the toxic effect of nisin on human tumor cells. These tests show that nisin shows cytotoxic activity on K562 and U937 cell lines at 72 h of exposure, at a concentration of 40 µg / mL, which corresponds to 100 times the minimum inhibitory concentration (MIC) used for its action on bacteria. When comparing the effect of nisin on human peripheral blood mononuclear cells with lymphoid and myeloid tumor lines (K562 and U937 respectively), a selective effect of nisin on blood tumor cells is observed.


Subject(s)
Humans , Cell Line, Tumor/drug effects , Anti-Bacterial Agents/pharmacology , Nisin/pharmacology , Staphylococcus aureus/drug effects , Bacteriocins/pharmacology , In Vitro Techniques , Microbial Sensitivity Tests , Cell Survival/drug effects , K562 Cells/drug effects , U937 Cells/drug effects
4.
Molecules ; 25(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260521

ABSTRACT

Cryptocarya alba (Peumo; CA) and Laurelia sempervirens (Laurel; LS) are herbs native to the Chilean highlands and have historically been used for medicinal purposes by the Huilliches people. In this work, the essential oils were extracted using hydrodistillation in Clevenger apparatus and analyzed by GC-MS to determine their composition. The antioxidant capacity (AC) was evaluated in vitro. The cytotoxicity was determined using cell line cultures both non tumoral and tumoral. The toxicity was determined using the nematode Caenorhabditis elegans. The antimicrobial activity was evaluated against 52 bacteria using the agar disc diffusion method and the minimum inhibitory concentrations (MICs) were determined. The principal compounds found in C. alba essential oil (CA_EO) were α-terpineol (24.96%) and eucalyptol (21.63%) and were isazafrol (91.9%) in L. sempervirens essential oil (LS_EO). Both EOs showed antioxidant capacity in vitro. Both EO showed antibacterial activity against bacteria using. LS_EO showed more inhibitory effect on these cell lines respect to CA_EO. Both EOs showed toxicity against the nematode C.elegans at 3.12-50 mg/mL. The essential oils of CA and LS have an important bioactive potential in their antioxidant, antibacterial and cytotoxicity activity. Both essential oils could possibly be used in the field of natural medicine, natural food preservation, cosmetics, sanitation and plaguicides among others.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Cryptocarya/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Animals , Bacteria/drug effects , Bacteria/growth & development , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
5.
Article in English | MEDLINE | ID: mdl-33072618

ABSTRACT

Vibrio parahaemolyticus non-toxigenic strains are responsible for about 10% of acute gastroenteritis associated with this species, suggesting they harbor unique virulence factors. Zonula occludens toxin (Zot), firstly described in Vibrio cholerae, is a secreted toxin that increases intestinal permeability. Recently, we identified Zot-encoding genes in the genomes of highly cytotoxic Chilean V. parahaemolyticus strains, including the non-toxigenic clinical strain PMC53.7. To gain insights into a possible role of Zot in V. parahaemolyticus, we analyzed whether it could be responsible for cytotoxicity. However, we observed a barely positive correlation between Caco-2 cell membrane damage and Zot mRNA expression during PMC53.7 infection and non-cytotoxicity induction in response to purified PMC53.7-Zot. Unusually, we observed a particular actin disturbance on cells infected with PMC53.7. Based on this observation, we decided to compare the sequence of PMC53.7-Zot with Zot of human pathogenic species such as V. cholerae, Campylobacter concisus, Neisseria meningitidis, and other V. parahaemolyticus strains, using computational tools. The PMC53.7-Zot was compared with other toxins and identified as an endotoxin with conserved motifs in the N-terminus and a variable C-terminal region and without FCIGRL peptide. Notably, the C-terminal diversity among Zots meant that not all of them could be identified as toxins. Structurally, PMC53.7-Zot was modeled as a transmembrane protein. Our results suggested that it has partial 3D structure similarity with V. cholerae-Zot. Probably, the PMC53.7-Zot would affect the actin cytoskeletal, but, in the absence of FCIGRL, the mechanisms of actions must be elucidated.


Subject(s)
Cholera Toxin , Vibrio parahaemolyticus , Caco-2 Cells , Campylobacter , Chile , Endotoxins , Humans , Vibrio parahaemolyticus/genetics
6.
Int J Mol Sci ; 20(11)2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31185635

ABSTRACT

Small regulatory RNAs (sRNAs) are molecules that play an important role in the regulation of gene expression. sRNAs in bacteria can affect important processes, such as metabolism and virulence. Previous studies showed a significant role of sRNAs in the Vibrio species, but knowledge about Vibrio parahaemolyticus is limited. Here, we examined the conservation of sRNAs between V. parahaemolyticus and other human Vibrio species, in addition to investigating the conservation between V. parahaemolyticus strains differing in pandemic origin. Our results showed that only 7% of sRNAs were conserved between V. parahaemolyticus and other species, but 88% of sRNAs were highly conserved within species. Nonetheless, two sRNAs coding to RNA-OUT, a component of the Tn10/IS10 system, were exclusively present in pandemic strains. Subsequent analysis showed that both RNA-OUT were located in pathogenicity island-7 and would interact with transposase VPA1379, according to the model of pairing of IS10-encoded antisense RNAs. According to the location of RNA-OUT/VPA1379, we also investigated if they were expressed during infection. We observed that the transcriptional level of VPA1379 was significantly increased, while RNA-OUT was decreased at three hours post-infection. We suggest that IS10 transcription increases in pandemic strains during infection, probably to favor IS10 transposition and improve their fitness when they are facing adverse conditions.


Subject(s)
Genomic Islands , RNA, Untranslated/genetics , Vibrio parahaemolyticus/genetics , Caco-2 Cells , Conserved Sequence , Humans , Transposases/genetics , Transposases/metabolism , Vibrio parahaemolyticus/pathogenicity
7.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818894

ABSTRACT

We announce the draft genome sequence of Pseudomonas sp. strain K2I15, isolated from the rhizosphere of Deschampsia antarctica Desv. The genome sequence had 6,645,031 bp with a G+C content of 60.4%. This genome provides insights into the niche adaptation, prophage carriage, and evolution of this specific Antarctic bacteria.

8.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818897

ABSTRACT

We present here the draft genome sequence of Bacillus sp. strain K2I17, which was isolated from the rhizosphere of Deschampsia antarctica Desv. The genomic sequence contained 6,113,341 bp. This genome provides insights into the possible new biomedical and biotechnical applications of this specific Antarctic bacterium.

9.
Acta Trop ; 124(2): 107-12, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22750482

ABSTRACT

In previous studies we reported the cloning, expression and purification of the capsid protein from Dengue-2 virus. Subsequently, we described an in vitro-assembly process for the capsid protein, which resulted in nucleocapsid-like particles (recNLPs) that induced functional cell-mediated immunity and protection in mice. Moreover, our group reported the evaluation in non-human primates of the fusion protein P64k-domain III from Dengue-1 (PD10). This protein proved to be immunogenic and protective when Freund's adjuvant, but not alum, was used. Based on the previously demonstrated capacity of recNLPs to potentiate the immunogenicity of heterologous proteins, in this study we assess the immune response elicited by the formulation PD10-recNLPs-alum and its protective capacity against Dengue-1 and Dengue-2 virus. As expected, the humoral immune response was mainly directed against Dengue-1, while high levels of IFN-γ secretion were detected after stimulation with Dengue-1 and Dengue-2. Consistently, animals immunized with the bivalent formulation were significantly protected against challenge with either Dengue serotype. In conclusion, this report describes a novel formulation based on recombinant proteins and alum, which is protective against Dengue-1 and Dengue-2 in mice.


Subject(s)
Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue/prevention & control , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Capsid Proteins/immunology , Dengue/virology , Dengue Virus/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Survival Analysis , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Fusion Proteins/immunology
10.
J Gen Virol ; 93(Pt 6): 1204-1214, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22398317

ABSTRACT

The interplay of different inflammatory cytokines induced during dengue virus infection plays a role in either protection or increased disease severity. In this sense, vaccine strategies incorporating whole virus are able to elicit both functional and pathological responses. Therefore, an ideal tetravalent vaccine candidate against dengue should be focused on serotype-specific sequences. In the present work, a new formulation of nucleocapsid-like particles (NLPs) obtained from the recombinant dengue-2 capsid protein was evaluated in mice to determine the level of protection against homologous and heterologous viral challenge and to measure the cytotoxicity and cytokine-secretion profiles induced upon heterologous viral stimulation. As a result, a significant protection rate was achieved after challenge with lethal dengue-2 virus, which was dependent on CD4(+) and CD8(+) cells. In turn, no protection was observed after heterologous challenge. In accordance, in vitro-stimulated spleen cells from mice immunized with NLPs from the four dengue serotypes showed a serotype-specific response of gamma interferon- and tumour necrosis factor alpha-secreting cells. A similar pattern was detected when spleen cells from dengue-immunized animals were stimulated with the capsid protein. Taking these data together, we can assert that NLPs constitute an attractive vaccine candidate against dengue. They induce a functional immune response mediated by CD4(+) and CD8(+) cells in mice, which is protective against viral challenge. In turn, they are potentially safe due to two important facts: induction of serotype specific cell-mediated immunity and lack of induction of antiviral antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.


Subject(s)
Capsid Proteins/immunology , Dengue Virus/immunology , Dengue/immunology , Immunity, Cellular , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Capsid Proteins/genetics , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Dengue Virus/genetics , Female , Humans , Immunization , Interferon-gamma/immunology , Mice , Mice, Inbred BALB C , Nucleocapsid/genetics , Nucleocapsid/immunology , Species Specificity , Viral Vaccines/genetics , Viral Vaccines/immunology
11.
Int J Infect Dis ; 16(3): e198-203, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22277259

ABSTRACT

OBJECTIVES: Recognizing the uniqueness of secondary dengue virus (DENV)-1/3 dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) cases at an interval of 24 years, we sought to estimate DENV infections as well as the ratios between mild disease and DHF/DSS by DENV infection sequence in Playa District (Havana, Cuba) during the 2001-2002 outbreak of dengue virus type 3 (DENV-3). METHODS: A retrospective seroepidemiological study was conducted in 2003 in Playa District. Blood samples were collected from a 1% random sample of residents and were studied for the prevalence of dengue neutralizing antibodies. RESULTS: DENV-3 was found to have infected 7.2% (95% confidence interval (95% CI) 6.0-8.4%) of susceptible individuals (the entire cohort), the majority of whom experienced silent infections. Virtually every individual who had a secondary infection in the sequence DENV-1 then DENV-3 became ill, with a ratio of severe to mild cases of 1:35 (95% CI 1:67-1:23). Secondary infections in the sequence DENV-2/3 were less pathogenic than DENV-1/3. Mild disease accompanying secondary DENV2/3 occurred at a ratio of 1:4.49 infections (95% CI 1:5.77-1:3.42) secondary infections. CONCLUSIONS: The results obtained highlight the role of the infecting serotype and also the sequence of the viral infection in the clinical outcome of a dengue infection.


Subject(s)
Coinfection/epidemiology , Dengue Virus/pathogenicity , Disease Outbreaks , Severe Dengue/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Child , Child, Preschool , Coinfection/virology , Cuba/epidemiology , Epidemiologic Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Serotyping , Severe Dengue/virology , Young Adult
12.
Vaccine ; 29(25): 4256-63, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21447316

ABSTRACT

Here we evaluated the suitability of the synthetic adjuvant IC31® to potentiate the protective capacity of PD5 protein (domain III of the envelope protein of dengue 2 virus fused to the carrier protein P64k). Unlike Alum, PD5 mixed with IC31® induced complete protection against virus challenge in mice and increased IFN-γ secretion after in vitro re-stimulation. The induced antibody response was highly specific to the homologous serotype and showed both IgG1 and IgG2a subtypes. IC31® is a promising adjuvant for PD5 recombinant protein based vaccination against dengue. Future work should address the suitability of PD5/IC31® formulations in non-human primate models.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Oligodeoxyribonucleotides/administration & dosage , Oligopeptides/administration & dosage , Animals , Antibodies, Viral/blood , Dengue Vaccines/administration & dosage , Drug Combinations , Female , Immunoglobulin G/blood , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
13.
Clin Vaccine Immunol ; 16(12): 1829-31, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19726617

ABSTRACT

In the present work, we evaluated the neutralizing capacity of the antibodies induced by dengue virus type 1 and 2 envelope domain III recombinant proteins in monkeys against strains of different dengue virus type 1 and 2 genotypes. Here we demonstrated that dengue virus type 1 and 2 recombinant proteins induced high titers of neutralizing antibodies against different genotype strains.


Subject(s)
Antibodies, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Recombinant Proteins/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue/virology , Dengue Virus/genetics , Genotype , Macaca fascicularis , Neutralization Tests , Recombinant Proteins/metabolism , Viral Envelope Proteins/metabolism
14.
Arch Virol ; 154(7): 1035-45, 2009.
Article in English | MEDLINE | ID: mdl-19504165

ABSTRACT

The current study shows the usefulness of dengue-3- and dengue-4-specific phage-displayed antibody fragments as tools for viral detection and serotyping in sera from infected individuals. C6/36 HT cells were inoculated with acute-phase sera from patients, and supernatants were collected daily and analyzed by ELISA using phage-displayed antibody fragments as serotype-specific detector reagents. Serotyping of most samples was possible as early as two to three days postinoculation. Results were comparable with those obtained by indirect immunofluorescence assay but were obtained in a shorter period of time (<1 week). Phage-displayed antibody fragments were better tools for diagnosis and serotyping than their soluble counterparts. Our approach combines the advantages of viral isolation and ELISA techniques. These results could be the basis for the development of a high-throughput method for identifying dengue virus serotypes, which is crucial for the management and control of the disease.


Subject(s)
Antibodies, Viral/immunology , Dengue Virus/immunology , Dengue/diagnosis , Dengue/immunology , Angola/epidemiology , Antibodies, Monoclonal , Antibody Formation , Cuba/epidemiology , Dengue/blood , Dengue/epidemiology , Dengue Virus/classification , Dengue Virus/isolation & purification , Disease Outbreaks , Dominica/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Peptide Fragments/immunology , Serotyping , Viral Plaque Assay
15.
J Virol Methods ; 147(2): 235-43, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17950912

ABSTRACT

Antibody fragments to the four Dengue virus serotypes were isolated from a human universal naïve library using phage display technology. Phage-displayed antibody fragments were selected on Dengue virus particles directly captured from infected Vero cells supernatant by an anti-dengue monoclonal antibody, in order to avoid laborious virus concentration/purification procedures. A total of nine phage-displayed antibody fragments were obtained. Seven of them were highly specific for three of the selector serotypes (two for Dengue 1, four for Dengue 3 and one for Dengue 4). One clone (Dengue 3-selected) cross-reacted with Dengue 1, whereas another (selected with Dengue 2) cross-reacted with the three remaining serotypes. The soluble variants of six antibody fragments recognized their target viruses when used at nanomolar and even subnanomolar concentrations. All phage-displayed antibody fragments were cross-reactive against several strains of distinct genotypes within the corresponding serotype(s). These antibody fragments are potentially useful for the future development of tools for viral diagnosis and serotype identification. The simple phage selection method on captured virus could be applied in a high throughput way to obtain larger panels of antibody fragments to Dengue virus for multiple applications.


Subject(s)
Antibodies, Viral/immunology , Dengue Virus/immunology , Immunoglobulin Fragments/immunology , Peptide Library , Animals , Antibodies, Viral/genetics , Antibody Specificity , Bacteriophages , Cell Line , Cross Reactions , Dengue Virus/classification , Humans , Immunoglobulin Fragments/genetics , Serotyping
16.
Int J Biomed Sci ; 3(2): 137-43, 2007 Jun.
Article in English | MEDLINE | ID: mdl-23675036

ABSTRACT

To study some biological and molecular properties of nine DENV-2 strains isolated during the 1981 Cuban epidemic, temperature sensitivity, viral plaque size, the kinetic of virus replication in newborn mice inoculated by intracerebral route, the influence of pH medium on virus-cell attachment phase and the restriction enzyme pattern were studied. Strains were classified in two patterns according to temperature sensitivity, plaque size, and virus replication in mouse brain and cell culture and restriction enzymatic pattern the changes observed differentiate clearly the strains isolated at the beginning and at the end of the epidemic suggesting that viruses with different characteristics circulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...