Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Hum Mol Genet ; 31(19): 3377-3391, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35220425

ABSTRACT

Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 × 10-8) with GDM, mapping to/near MTNR1B (P = 4.3 × 10-54), TCF7L2 (P = 4.0 × 10-16), CDKAL1 (P = 1.6 × 10-14), CDKN2A-CDKN2B (P = 4.1 × 10-9) and HKDC1 (P = 2.9 × 10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes, Gestational/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Glucose , Humans , Polymorphism, Single Nucleotide/genetics , Pregnancy
2.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Article in English | MEDLINE | ID: mdl-34475573

ABSTRACT

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Subject(s)
Blood Proteins/genetics , Gene Expression Regulation/genetics , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics
3.
Sci Rep ; 10(1): 20567, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239708

ABSTRACT

The role of metabolic syndrome (MetS) as a preceding metabolic state for type 2 diabetes and cardiovascular disease is widely recognised. To accumulate knowledge of the pathological mechanisms behind the condition at the methylation level, we conducted an epigenome-wide association study (EWAS) of MetS and its components, testing 1187 individuals of European ancestry for approximately 470 000 methylation sites throughout the genome. Methylation site cg19693031 in gene TXNIP -previously associated with type 2 diabetes, glucose and lipid metabolism, associated with fasting glucose level (P = 1.80 × 10-8). Cg06500161 in gene ABCG1 associated both with serum triglycerides (P = 5.36 × 10-9) and waist circumference (P = 5.21 × 10-9). The previously identified type 2 diabetes-associated locus cg08309687 in chromosome 21 associated with waist circumference for the first time (P = 2.24 × 10-7). Furthermore, a novel HDL association with cg17901584 in chromosome 1 was identified (P = 7.81 × 10-8). Our study supports previous genetic studies of MetS, finding that lipid metabolism plays a key role in pathology of the syndrome. We provide evidence regarding a close interplay with glucose metabolism. Finally, we suggest that in attempts to identify methylation loci linking separate MetS components, cg19693031 appears to represent a strong candidate.


Subject(s)
Epigenesis, Genetic/genetics , Epigenomics/methods , Metabolic Syndrome/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adult , Aged , Carrier Proteins/genetics , DNA Methylation/genetics , Diabetes Mellitus, Type 2/genetics , Epigenome/genetics , Female , Finland/epidemiology , Genome/genetics , Genome-Wide Association Study/methods , Glucose/metabolism , Humans , Lipid Metabolism/genetics , Lipids/genetics , Male , Metabolic Syndrome/metabolism , Middle Aged , Polymorphism, Single Nucleotide/genetics , White People/genetics
4.
Hypertension ; 76(1): 195-205, 2020 07.
Article in English | MEDLINE | ID: mdl-32520614

ABSTRACT

We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with P<1×10-5. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (P<1×10-7) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with P<0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 (TXNIP) and cg00716257 (JDP2) determined by environmental effects acting on both systolic BP and methylation levels.


Subject(s)
Blood Pressure/genetics , CpG Islands/genetics , DNA Methylation , Epigenome/genetics , Essential Hypertension/genetics , Gene-Environment Interaction , Genome-Wide Association Study , Adolescent , Adult , Aged , Black People/statistics & numerical data , Body Mass Index , Cohort Studies , Diseases in Twins/epidemiology , Diseases in Twins/genetics , Essential Hypertension/epidemiology , Essential Hypertension/ethnology , Female , Gene Expression , Humans , Male , Middle Aged , Twin Studies as Topic , White People/statistics & numerical data , Young Adult
5.
Am J Hum Genet ; 106(3): 389-404, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109421

ABSTRACT

Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.


Subject(s)
Genome-Wide Association Study , Leukocytes/ultrastructure , Nucleotides/metabolism , Telomere , Humans
6.
Sci Rep ; 9(1): 1193, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718923

ABSTRACT

Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 ± 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 ± 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value < 0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.


Subject(s)
DNA Methylation/genetics , Sleep Initiation and Maintenance Disorders/genetics , Sleep/genetics , Adult , Circadian Rhythm/genetics , Cross-Sectional Studies , Epigenesis, Genetic/genetics , Gene Expression/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Prospective Studies , Sleep Disorders, Circadian Rhythm/genetics
7.
Mol Psychiatry ; 24(12): 1920-1932, 2019 12.
Article in English | MEDLINE | ID: mdl-29988085

ABSTRACT

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10-6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.


Subject(s)
Aging/genetics , Heart Diseases/genetics , Nutrients , Aged , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Cohort Studies , Energy Intake/genetics , Female , Fibroblast Growth Factors/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genomics/methods , Genotype , Heart Diseases/epidemiology , Humans , Male , Membrane Proteins/genetics , Middle Aged , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Retinoic Acid/genetics , White People/genetics
8.
Biomark Med ; 13(11): 931-940, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30191727

ABSTRACT

Aim: The aim of the study was to explore the effects of variants at HMGCR-KIF6loci on a range of cardio-metabolic phenotypes. Methods: We analyzed the range of variants within Genetics in Brisighella Health Study and KIF6 genes using an additive genetic model on 18 cardiometabolic phenotypes in a sample of 1645 individuals from the Genetics in Brisighella Health Study and replicated in 10,662 individuals from the Estonian Genome Center University of Tartu. Results: We defined directly the effects of rs3846662:C>A at HMGCR on apoB levels. The analysis also confirmed effects of on low-density lipoprotein-cholesterol and total cholesterol levels. Variants in KIF6 gene did not reveal any associations with cardiometabolic phenotypes. Conclusion: This study highlights effect of HMGCR locus on assay-determined apoB levels, an infrequent measure of blood lipids in large studies.


Subject(s)
Apolipoprotein B-100/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Adult , Cholesterol, LDL/blood , Estonia , Female , Genetic Variation , Humans , Kinesins/genetics , Kinesins/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
9.
Eur J Hum Genet ; 25(11): 1179-1180, 2017 11.
Article in English | MEDLINE | ID: mdl-29023438
10.
Diabetes ; 66(11): 2888-2902, 2017 11.
Article in English | MEDLINE | ID: mdl-28566273

ABSTRACT

To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 × 10-8), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Expression Regulation/physiology , Genome-Wide Association Study , White People , Genetic Variation , Humans
11.
Nature ; 533(7604): 539-42, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225129

ABSTRACT

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Educational Status , Fetus/metabolism , Gene Expression Regulation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Bipolar Disorder/genetics , Cognition , Computational Biology , Gene-Environment Interaction , Humans , Molecular Sequence Annotation , Schizophrenia/genetics , United Kingdom
12.
Epigenomics ; 8(6): 789-99, 2016 06.
Article in English | MEDLINE | ID: mdl-27004446

ABSTRACT

Genomic imprinting is an epigenetic feature characterized by parent-specific monoallelic gene expression. The aim of this study was to compare the DNA methylation status of imprinted genes and imprinting control regions (ICRs), harboring differentially methylated regions (DMRs) in a comprehensive panel of 18 somatic tissues. The germline DMRs analyzed were divided into ubiquitously imprinted and placenta-specific DMRs, which show identical and different methylation imprints in adult somatic and placental tissues, respectively. We showed that imprinted genes and ICR DMRs maintain methylation patterns characterized by intermediate methylation levels in somatic tissues, which are pronounced in a specific region of the promoter area, located 200-1500 bp from the transcription start site. This intermediate methylation is concordant with gene expression from a single unmethylated allele and silencing of a reciprocal parental allele through DNA methylation. The only exceptions were seen for ICR DMRs of placenta-specific imprinted genes, which showed low levels of methylation, suggesting that these genes escape parent-specific epigenetic regulation in somatic tissues.


Subject(s)
DNA Methylation , Genomic Imprinting , Adult , CpG Islands , Female , Gene Expression , Germ Cells/metabolism , Humans , Male , Middle Aged , Organ Specificity , Placenta/metabolism , Pregnancy , Promoter Regions, Genetic
13.
Nat Genet ; 47(10): 1121-1130, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343387

ABSTRACT

Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.


Subject(s)
Coronary Artery Disease/genetics , Genome, Human , Genome-Wide Association Study , Humans , Phenotype
14.
Nat Genet ; 47(11): 1294-1303, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26414677

ABSTRACT

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , DNA Repair , Genetic Predisposition to Disease/genetics , Hypothalamus/metabolism , Signal Transduction/genetics , Adult , Age Factors , Aging/genetics , Female , Gene Regulatory Networks/genetics , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Menopause/genetics , Middle Aged , Models, Genetic , Phenotype , Reproduction/genetics
15.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26132169

ABSTRACT

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Glycemic Index/genetics , Obesity/genetics , Quantitative Trait Loci/genetics , Body Mass Index , Gene Frequency/genetics , Genome-Wide Association Study , Germinal Center Kinases , Glucose-6-Phosphatase/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Thrombospondins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...