Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Front Microbiol ; 14: 1264361, 2023.
Article in English | MEDLINE | ID: mdl-37840729

ABSTRACT

Background: The results of omic methodologies are often reported as separate datasets. In this study we applied for the first time multi-omic features clustering and pathway enrichment to clarify the biological impact of vitamin B2 supplementation on broiler caeca microbiome. Methods: The caeca contents of broilers fed +50 and +100 mg/kg vitamin B2 were analyzed by shotgun metagenomic and metabolomic. Latent variables extracted from NMR spectra, as well as taxonomic and functional features profiled from metagenomes, were integrated to characterize the effect of vitamin B2 in modulating caeca microbiome. A pathway-based network was obtained by mapping the observed input genes and compounds, highlighting connected strands of metabolic ways through pathway-enrichment analysis. Results: At day 14, the taxonomic, functional and metabolomic features in the caeca of tested broilers showed some degree of separation between control and treated groups, becoming fully clear at 28 days and persisting up to 42 days. In the caeca of birds belonging to the control group Alistipes spp. was the signature species, while the signature species in the caeca of broilers fed +50 and +100 mg/kg vitamin B2 were Bacteroides fragilis and Lactobacillus crispatus, Lactobacillus reuteri, Ruminococcus torques, Subdoligranum spp., respectively. The pathway enrichment analysis highlighted that the specific biochemical pathways enhanced by the supplementations of vitamin B2 were N-Formyl-L-aspartate amidohydrolase, producing Aspartate and Formate; L-Alanine:2-oxoglutarate amino transferase, supporting the conversion of L-Alanine and 2-Oxoglutarate in Pyruvate and L-Glutamate; 1D-myo-inositol 1/4 phosphate phosphohydrolase, converting Inositol 1/4-phosphate and water in myo-Inositol and Orthophosphate. The results of this study demonstrated that the caeca of birds fed +50 and + 100 mg/kg were those characterized by taxonomic groups more beneficial to the host and with a higher concentration of myo-inositol, formic acid, amino acids and pyruvate involved in glycolysis and amino acid biosynthesis. Conclusion: In this study we demonstrated how to perform multi-omic features integration to describe the biochemical mechanisms enhanced by the supplementation of different concentrations of vitamin B2 in the poultry diet. The relationship between vitamin B2 supplementation and myo-inositol production was highlighted in our study for the first time.

2.
Foods ; 12(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627990

ABSTRACT

Fish is a fundamental component of the human diet, and in the near future the proportion of aquatic foods originating from aquaculture production is expected to increase to over 56%. The sustainable growth of the aquaculture sector involves the use of new sustainable raw materials as substitutes for traditional fishmeal and fish oil ingredients, but it is crucial that the substitution maintains the nutritional value of the fish meat. In addition, the preservation of the nutritional value should be a mandatory requirement of new technologies that extend the shelf life of fish. In this context, we evaluated the impact of a newly formulated feed and three preservation treatments (brine, pulsed electric field (PEF), and PEF plus brine) on the fatty acid composition and protein and lipid digestibility of sea bass fillets. In non-digested fillets, although slightly reduced by the newly formulated feed (standard = 2.49 ± 0.14; newly formulated = 2.03 ± 0.10) the n-3/n-6 PUFA ratio indicated good nutritional value. The preservation treatments did not modify the fatty acid content and profile of non-digested fillets. Conversely, protein and lipid digestibility were not affected by the different diets but were significantly reduced by brine, with or without PEF, while PEF alone had no effect. Overall, our results indicated that the newly formulated feed containing 50% less fishmeal is a good compromise between the sustainability and nutritional value of cultivated seabass, and PEF is a promising preservation technology deserving of further study.

3.
Foods ; 12(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297439

ABSTRACT

Sour meat is a highly appreciated traditional fermented product, mainly from the Guizhou, Yunnan, and Hunan provinces. The flavor profiles of sour meat from goose and pork were evaluated using gas chromatography-ion mobility spectrometry (GC-IMS) combined with an electronic nose (E-nose) and tongue (E-tongue). A total of 94 volatile compounds were characterized in fermented sour meat from both pork and goose using GC-IMS. A data-mining protocol based on univariate and multivariate analyses revealed that the source of the raw meat plays a crucial role in the formation of flavor compounds during the fermentation process. In detail, sour meat from pork contained higher levels of hexyl acetate, sotolon, heptyl acetate, butyl propanoate, hexanal, and 2-acetylpyrrole than sour goose meat. In parallel, sour meat from goose showed higher levels of 4-methyl-3-penten-2-one, n-butyl lactate, 2-butanol, (E)-2-nonenal, and decalin than sour pork. In terms of the odor and taste response values obtained by the E-nose and E-tongue, a robust principal component model (RPCA) could effectively differentiate sour meat from the two sources. The present work could provide references to investigate the flavor profiles of traditional sour meat products fermented from different raw meats and offer opportunities for a rapid identification method based on flavor profiles.

4.
Foods ; 12(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37238865

ABSTRACT

Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.

5.
Metabolites ; 13(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37110141

ABSTRACT

Fish freshness and quality can be measured through several indices that can be both chemical and physical. The storage temperature and the time that elapses following the catching of the fish are fundamental parameters that define and influence both the degree of freshness and nutritional quality. Moreover, they particularly effect the kind of fish we considered. In this research, it was observed how different temperatures of storage and shelf-life (+4 °C and 0 °C) may affect the metabolic profile of red mullet (Mullus barbatus) and bogue (Boops boops) fish samples over time, specifically observing the alteration of freshness and quality. In particular, a High-Resolution Nuclear Magnetic Resonance (HR-NMR)-based metabolomics approach was applied to study the metabolic profile changes that occur in fish spoilage. The HR-NMR spectroscopy data were useful for calculating a kinetic model that was able to predict the evolution of different compounds related to fish freshness, such as trimethylamine (TMA-N) and adenosine-5'-triphosphate (ATP) catabolites for the K-index. Furthermore, NMR in combination with chemometrics allowed us to estimate a further kinetic model able to represent the spoilage evolution by considering the entire metabolome. In this way, it was also possible to detect further biomarkers characterizing the freshness and quality status of both red mullets and bogues.

6.
Foods ; 11(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36429269

ABSTRACT

A variety of metabolites contribute to the freshness and taste characteristics of seafood. This study investigated the effects of high hydrostatic pressure (HHP; 400, 500, and 600 MPa) for 10 min) on the metabolome of striped prawn during chilled storage, in relation to microorganisms' development. All treated samples showed lower viable counts throughout storage compared to the untreated counterparts. The limit of acceptability from a microbiological point of view was extended from 9 to as many as 35 days by 600 MPa treatment. Metabolites were quantified by 1H-NMR through a targeted-untargeted metabolomic approach. Molecules linked to nucleotides' degradation and amines' anabolism suggested an overall freshness improvement granted by HHP. Notably, putrescine and cadaverine were detected only in untreated prawn samples, suggesting the inactivation of degradative enzymes by HHP. The concentration of molecules that influence umami perception was significantly elevated by HHP, while in untreated samples, the concentration of molecules contributing to a sour taste gradually increased during storage. As metabolomics was applied in its untargeted form, it allowed us to follow the overall set of metabolites related to HHP processing and storage, thus providing novel insights into the freshness and taste quality of striped prawn as affected by high hydrostatic pressure.

7.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293416

ABSTRACT

Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value.


Subject(s)
Meat Products , Nitrosamines , Humans , Nitrates/metabolism , Salts , Nitrites/metabolism , Meat/analysis , Nutrients , Fatty Acids
8.
Metabolites ; 12(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36005608

ABSTRACT

The availability of omics data providing information from different layers of complex biological processes that link nutrition to human health would benefit from the development of integrated approaches combining holistically individual omics data, including those associated with the microbiota that impacts the metabolisation and bioavailability of food components. Microbiota must be considered as a set of populations of interconnected consortia, with compensatory capacities to adapt to different nutritional intake. To study the consortium nature of the microbiome, we must rely on specially designed data analysis tools. The purpose of this work is to propose the construction of a general correlation network-based explorative tool, suitable for nutritional clinical trials, by integrating omics data from faecal microbial taxa, stool metabolome (1H NMR spectra) and GC-MS for stool volatilome. The presented approach exploits a descriptive paradigm necessary for a true multiomics integration of data, which is a powerful tool to investigate the complex physiological effects of nutritional interventions.

9.
Nutrients ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35276876

ABSTRACT

Although epidemiological studies indicate a strong correlation between high sugar intake and metabolic diseases, the biological mechanisms underlying this link are still controversial. To further examine the modification and crosstalk occurring in enterocyte metabolism during sugar absorption, in this study we evaluate the diffusion and intestinal metabolism of glucose, fructose and sucrose, which were supplemented in equimolar concentration to Caco-2 cells grown on polyester membrane inserts. At different time points after supplementation, changes in metabolite concentration were evaluated in the apical and basolateral chambers by nuclear magnetic resonance (NMR) and gas-chromatography (GC). Sucrose was only minimally hydrolyzed by Caco-2 cells. Upon supplementation, we observed a faster uptake of fructose than glucose, the pentose sugar being also faster catabolized. Monosaccharide absorption was concomitant to the synthesis/transport of other metabolites, which occurred differently in glucose and fructose supplemented cells. Our results confirm the prominent role of intestinal cells in fructose metabolism and clearance after absorption, representing a further step forward in the understanding of the role of dietary sugars. Future research, including targeted analysis on specific transporters/enzymes and the use of labeled substrates, will be helpful to confirm the present results and their interpretation.


Subject(s)
Fructose , Glucose , Caco-2 Cells , Enterocytes/metabolism , Fructose/metabolism , Glucose/metabolism , Humans , Sodium-Glucose Transporter 1/metabolism
10.
Magn Reson Chem ; 60(7): 590-596, 2022 07.
Article in English | MEDLINE | ID: mdl-35174523

ABSTRACT

Food is a complex matter, literally. From production to functionalization, from nutritional quality engineering to predicting effects on health, the interest in finding an efficient physicochemical characterization of food has boomed in recent years. The sheer complexity of characterizing food and its interaction with the human organism has however made the use of data driven approaches in modeling a necessity. High-throughput techniques, such as nuclear magnetic resonance (NMR) spectroscopy, are well suited for omics data production and, coupled with machine learning, are paving a promising way of modeling food-human interaction. The foodomics approach sets the framework for omic data integration in food studies, in which NMR experiments play a key role. NMR data can be used to assess nutritional qualities of food, helping the design of functional and sustainable sources of nutrients; detect biomarkers of intake and study how they impact the metabolism of different individuals; study the kinetics of compounds in foods or their by-products to detect pathological conditions; and improve the efficiency of in silico models of the metabolic network.


Subject(s)
Food , Magnetic Resonance Imaging , Biomarkers , Humans , Machine Learning , Magnetic Resonance Spectroscopy
11.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163932

ABSTRACT

Reducing the salt content in food is an important nutritional strategy for decreasing the risk of diet-related diseases. This strategy is particularly effective when applied to highly appreciated food having good nutritional characteristics, if it does not impact either upon sensory or nutritional properties of the final product. This work aimed at evaluating if the reduction of salt content by decreasing the brine soaking time modifies fatty acid and protein bioaccessibility and bioactive peptide formation in a 30-month-ripened Parmigiano Reggiano cheese (PRC). Hence, conventional and hyposodic PRC underwent in vitro static gastrointestinal digestion, and fatty acid and protein bioaccessibility were assessed. The release of peptide sequences during digestion was followed by LC-HRMS, and bioactive peptides were identified using a bioinformatic approach. At the end of digestion, fatty acid and protein bioaccessibility were similar in conventional and hyposodic PRC, but most of the bioactive peptides, mainly the ACE-inhibitors, were present in higher concentrations in the low-salt cheese. Considering that the sensory profiles were already evaluated as remarkably similar in conventional and hyposodic PRC, our results confirmed that shortening brine soaking time represents a promising strategy to reduce salt content in PRC.


Subject(s)
Cheese/analysis , Food Handling/methods , Nutrients/analysis , Peptide Biosynthesis , Salts/metabolism , Water/chemistry , Humans , Sodium Chloride , Solubility
12.
Leukemia ; 35(10): 2813-2826, 2021 10.
Article in English | MEDLINE | ID: mdl-34193978

ABSTRACT

Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Damage/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Chromatin/genetics , Female , Genomics/methods , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Nucleophosmin , Prognosis , Young Adult , Cohesins
13.
Foods ; 10(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673211

ABSTRACT

The balsamic vinegar of Modena (BVM), a food specialty under the European Protected Geographical Indication system, is made from grape must blended with wine vinegar exclusively in the Italian province of Modena or Reggio Emilia. Vinegar is associated to an improved digestive function and glycemic response to carbohydrate-rich meals, appetite stimulation, and reduction of hyperlipidemia and obesity. Although many of these effects are attributed to the high concentration of bioactive molecules, the modulation of digestive enzymes activity could have a role. The aim of this study was to investigate the effect of BVM on the digestibility and component release of three foods that are often seasoned with this dressing but have different composition: Parmigiano Reggiano cheese, Bresaola (cured meat), and boiled potatoes. BVM modulated the protein digestion of protein-rich foods (cheese and cured meat) in a matrix-dependent manner, and the BVM effect was mainly related to the inhibition of pepsin in the gastric phase. In the starch-rich food (boiled potatoes), the most impressive effect of BVM was the lower release of anomeric and total carbohydrates, which was consistent with the observed reduction of pancreatic amylase activity. The present investigation shed a new light on the impact of BVM on the digestion process.

14.
Foods ; 9(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080879

ABSTRACT

Despite their high nutritional value, high quantities of fish caught in the Adriatic Sea are underused or discarded for their insignificant economic value. Mechanical separation of flesh represents an opportunity for developing innovative semi-finished products, even if it can promote an increased quality degradation rate. The aim of this study was to evaluate physico-chemical modifications of mechanically separated mantis shrimp flesh during deep-freezing storage. Flesh samples obtained using a belt-drum separator, frozen and vacuum-packed, were stored at 3 temperatures (industrial: -26 °C; domestic: -18 °C and abuse: -10 °C) for 12 months. During storage, qualitative (color, water content, pH, fatty acids (FA) and lipid oxidation) were evaluated. Fish freshness parameters (e.g., trimethylamine (TMA), dimethylamine (DMA) and amino acids) were assessed using nuclear magnetic resonance (1H-NMR). The mechanical separation process accelerated the initial oxidation phenomena, promoting color alterations, compared to manual separation. The main degradation phenomena during storage were significantly affected by temperature and were related to changes in luminosity, oxidation of n-3 polyunsaturated fatty acids (PUFA), increased lipolysis with release of free FA, production of TMA and DMA by residual enzymatic activity, and changes in amino acids due to proteolysis. The inter-disciplinary approach permitted important findings to be made, in terms of the extent of different degradative phenomena, bound to processing and storage conditions of mechanically separated mantis flesh.

15.
Microorganisms ; 8(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727134

ABSTRACT

The study of the microbiome in broiler chickens holds great promise for the development of strategies for health maintenance and performance improvement. Nutritional strategies aimed at modulating the microbiota-host relationship can improve chickens' immunological status and metabolic fitness. Here, we present the results of a pilot trial aimed at analyzing the effects of a nutritional strategy involving vitamin B2 supplementation on the ileum, caeca and litter microbiota of Ross 308 broilers, as well as on the metabolic profile of the caecal content. Three groups of chickens were administered control diets and diets supplemented with two different dosages of vitamin B2. Ileum, caeca, and litter samples were obtained from subgroups of birds at three time points along the productive cycle. Sequencing of the 16S rRNA V3-V4 region and NMR metabolomics were used to explore microbiota composition and the concentration of metabolites of interest, including short-chain fatty acids. Vitamin B2 supplementation significantly modulated caeca microbiota, with the highest dosage being more effective in increasing the abundance of health-promoting bacterial groups, including Bifidobacterium, resulting in boosted production of butyrate, a well-known health-promoting metabolite, in the caeca environment.

16.
Food Res Int ; 131: 108940, 2020 05.
Article in English | MEDLINE | ID: mdl-32247504

ABSTRACT

Nowadays, the strong demand for adequate nutrition is accompanied by concern about environmental pollution and there is a considerable emphasis on the recovery and recycling of food by-products and wastes. In this study, we focused on the exploitation of olive pomace as functional ingredient in biscuits and bread. Standard and enriched bakery products were made using different flours and fermentation protocols. After characterization, they were in vitro digested and used for supplementation of intestinal cells (Caco-2), which underwent exogenous inflammation. The enrichment caused a significant increase in the phenolic content in all products, particularly in the sourdough fermented ones. Sourdough fermentation also increased tocol concentration. The increased concentration of bioactive molecules did not reflect the anti-inflammatory effect, which was modulated by the baking procedure. Conventionally fermented bread enriched with 4% pomace and sourdough fermented, not-enriched bread had the greatest anti-inflammatory effect, significantly reducing IL-8 secretion in Caco-2 cells. The cell metabolome was modified only after supplementation with sourdough fermented bread enriched with 4% pomace, probably due to the high concentration of tocopherol that acted synergistically with polyphenols. Our data highlight that changes in chemical composition cannot predict changes in functionality. It is conceivable that matrices (including enrichment) and processing differently modulated bioactive bioaccessibility, and consequently functionality.


Subject(s)
Cytokines/metabolism , Food Handling , Olive Oil/chemistry , Bread/analysis , Caco-2 Cells , Cell Survival , Cytokines/genetics , Fermentation , Flour/analysis , Food, Fortified , Gene Expression Regulation , Humans
17.
Nutrients ; 12(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963239

ABSTRACT

Trimethylamine-N-oxide (TMAO) can be produced by the gut microbiota from dietary substrates and is associated with cardiovascular disease. While dairy products contain TMAO precursors, the effect of fermented dairy on TMAO metabolism remains unclear. We used plasma and urine samples collected for two randomised cross-over studies to evaluate the effects of fermented dairy consumption on TMAO metabolism. In Study 1, thirteen healthy young men tested a yogurt and an acidified milk during postprandial tests and a two-week daily intervention. In Study 2, ten healthy adults tested milk and cheese during postprandial tests. TMAO and five related metabolites were measured in plasma and urine by LC-MS/MS and NMR. Faecal microbiota composition was assessed in Study 1 (16S rRNA metagenomics sequencing). Fermented milk products were associated with lower postprandial TMAO responses than non-fermented milks in urine (Study 1, p = 0.01; Study 2, p = 0.02) and in plasma, comparing yogurt and acidified milk (Study 1, p = 0.04). Daily consumption of dairy products did not differentially affect fasting TMAO metabolites. Significant correlations were observed between microbiota taxa and circulating or urinary TMAO concentrations. Fermentation of dairy products appear, at least transiently, to affect associations between dairy products and circulating TMAO levels.


Subject(s)
Bacteria/metabolism , Cultured Milk Products , Dairy Products , Gastrointestinal Microbiome , Methylamines/blood , Methylamines/urine , Postprandial Period , Adolescent , Adult , Biomarkers/blood , Biomarkers/urine , Cross-Over Studies , Double-Blind Method , Feces/microbiology , Female , Humans , Male , Switzerland , Young Adult
18.
Animals (Basel) ; 10(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963348

ABSTRACT

The aim of the study was to characterize the soluble metabolomics profile of defatted colostrum of sows at different parity number (PA) and to correlate the metabolomics profile with the Brix percentage estimate of colostrum immunoglobulin G (IgG) and sow productive traits. A total of 96 Meidam (crossbreed Large White × Meishan) sows of PA from 1-4 (PA1: 28; PA2:26; PA3:12; PA4:26) were included, and their productive traits were recorded at 10 days post-farrowing. Colostrum IgG was quantified using a Brix refractometer, and metabolomics profile was assessed using 1H-NMR spectroscopy. Sows' PA slightly influenced the metabolomics profile of colostrum. lactose and glycine were higher in PA1 compared with PA4 (p 0.05) and N-acetylglucosamine (GlcNAc) tended to be higher in PA2 than PA3 and PA4 (p < 0.10). The Brix percentage of IgG was negatively associated with lactose and positively with creatine, myo-inositol, and O-phosphocholine (p < 0.05). Taurine was positively related to litter weight at birth. GlcNAc and myo-inositol were linked to piglet mortality at day 10 with a negative and positive trend, respectively. In conclusion, colostrum of gilts and multiparous sows had a similar metabolomics profile. Specific metabolites contributed to explanation of the variability in colostrum Brix percentage estimate of IgG concentration and the sows' productive performance.

19.
Food Res Int ; 115: 234-240, 2019 01.
Article in English | MEDLINE | ID: mdl-30599937

ABSTRACT

The most commonly used method for fish freshness determination is the sensory inspection; alternative sensory methods such as the Quality Index Method (QIM), based on the significant sensory parameters of one specific species, have been recently suggested. Considering that most of the sensory parameters are based on chromatic and morphological visual impression, the set-up of an objective method using computer vision techniques is very promising. The objective of this research was to characterize the changes in eye chromatic and morphological characteristics of European hake (Merluccius merluccius) during 13 days of storage on ice, using a tailored computer vision technique and a 3D scanner. Results obtained by multivariate statistical analysis of the colour spectra of eye images and by the eye concavity index using a 3D scanner permitted to estimate fish unacceptability after 7 days of storage, in agreement with results obtained by QIM sensory analysis. Moreover, 1H NMR was used to evaluate the production of trimethylamine (TMA) and the Ki index, confirming a good correlation with eye chromatic and morphological features. This preliminary study showed the high potentiality of the developed method as a non-destructive technique for raw fish freshness characterization / prediction, being a promising approach to create a robust portable instrument for the evaluation of fish freshness in real transport and marketing conditions.


Subject(s)
Eye/diagnostic imaging , Food Safety/methods , Gadiformes , Seafood/analysis , Animals , Cold Temperature , Color , Food Analysis/methods , Food Storage/methods , Methylamines/analysis , Taste , Time Factors
20.
Food Res Int ; 115: 268-275, 2019 01.
Article in English | MEDLINE | ID: mdl-30599941

ABSTRACT

The effect of modified atmosphere packaging (MAP) with unconventional gas mixtures on the main qualitative parameters of sardine fillets during refrigerated storage was investigated. Four different atmospheres conditions were tested: air; 30% CO2 + 70% N2; 30% CO2 + 70% N2O and 30% CO2 + 70% Ar. All samples were packaged in polypropylene trays sealed with a high barrier film and stored at 2-4 °C for 12 days. The quality and the freshness of sardine fillets packed in MAP were evaluated by microbiological, physical and chemical analyses after 0, 1, 2, 5, 6, 8 and 12 days of the storage period. The 2-thiobarbituric acid-reactive substances (TBARS) values for MAP samples were lower compared to air samples, reaching a final value of 1.09 mg malonaldehyde (MA)/kg and 3.39 mg MA/kg, respectively. The samples packed in Ar reached the fixed threshold for total mesophilic and psychrotrophic bacteria after 12 days of storage, resulting the best MAP condition adopted, able to increase the sardine shelf-life of 3 days with respect to the other tested conditions. Air packed samples showed significantly higher (p < 0.05) Hx content (50 mg/kg) compared to the rest of the MAP samples (20 mg/kg). At the end of the storage period, the sample packed in Ar showed a significantly lower value (p < 0.05) (around 40 mg/kg), than the other MAP conditions.


Subject(s)
Argon/analysis , Food Packaging/methods , Food Quality , Food Storage , Nitrous Oxide/analysis , Refrigeration , Seafood/analysis , Animals , Atmosphere/analysis , Bacteria/growth & development , Carbon Dioxide/analysis , Cold Temperature , Fishes , Food Contamination/analysis , Food Microbiology , Hypoxanthine/analysis , Magnetic Resonance Spectroscopy , Nitrogen/analysis , Oxygen/analysis , Seafood/microbiology , Thiobarbituric Acid Reactive Substances/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...