Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Nanoscale ; 16(27): 13211, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38952232

ABSTRACT

Correction for 'Photoluminescence modification of europium(III)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles' by Rodrigo A. Valenzuela-Fernández et al., Nanoscale, 2024, https://doi.org/10.1039/d4nr01526f.

2.
Nanoscale ; 16(27): 13161-13170, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913015

ABSTRACT

In recent years, there has been an increasing interest in developing new inorganic compounds with exceptional properties for advanced materials. Specifically, compounds containing europium have attracted much attention due to their luminescent properties. These compounds are used in electronics, biotechnology, medicine, and catalysis. Eu is known for its characteristic red emission, which can be influenced by the environment. This study investigates the surface-enhancement luminescence of europium-doped spinel oxides using modified surface with silver (Ag@SiO2 core-shell) nanoparticles as the enhancers. The europium-doped spinels were synthesized through a sol-gel method, and characterization techniques were used to analyze their structure and morphology. Photoluminescence spectra exhibited characteristic Eu3+ transitions, with the hypersensitive transition being the most prominent. The interaction with an Ag@SiO2 modified-surface led to a significant increase in photoluminescence. The study also analyzed the photoluminescence excitation and lifetimes of the oxides, leading to a 7.3-fold increase in photoluminescence. The improvements observed in the luminescence of these tailor-made materials show their potential interest in next-generation technologies.

3.
Inorg Chem ; 60(7): 4508-4516, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33705658

ABSTRACT

(Tb,Eu)-doped ZnO-annealed films at 1100 °C showed intense photoluminescense (PL) emission from Eu and Tb ions. The high-temperature annealing led to a chemical segregation and a secondary Zn-free phase formation that is suspected to be responsible for the high PL intensity. Large faceted inclusions of rare-earth (RE) silicates of a size of few hundred nanometers were observed. Owing to various advanced electron microscopy techniques, a detailed microstructural study of these nanometric inclusions combining atomic Z contrast imaging (STEM) and precession electron diffraction tomography (PEDT) data was carried out and resulted in the determination of a hexagonal P63/m-type (Tb,Eu)9.43(SiO4)6O2-δ structure related to an oxy-apatite structure. Chemical analyses from spectroscopic data (energy-dispersive X-ray mapping and electron energy loss spectroscopy) at the atomic scale showed that both RE elements sitting on two independent (4f) and (6h) atomic sites have three-fold oxidation states, while refinements of their occupancy sites from PEDT data have evidenced preferential deficiency for the first one. The deduced RE-O distances and their corresponding bond valences are listed and discussed with the efficient energy transfer from Tb3+ toward Eu3+.

4.
Anal Chim Acta ; 1100: 22-30, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31987144

ABSTRACT

Driven by the motivation to quantitively control and monitor trace metal ions in water, the development of environmental-friendly electrodes with superior detection sensitivity is extremely important. In this work, we report the design of a stable, ultrasensitive and biocompatible electrode for the detection of trace Ag+ and Cu2+ ions by growing n-type GaN micropillars on conductive p-type GaN substrate. The electrochemical measurement based on cyclic voltammetry indicates that the GaN micropillars exhibit quasi-reversible and mass-controlled reaction in redox probe solution. In the application of trace Ag+ and Cu2+ determination, the GaN micropillars show superior sensitivity and excellent conductivity by presenting a detection limit of 3.3 ppb for Ag+ and 3.3 ppb for Cu2+. Comparative studies on the electrochemical response of GaN micropillars and GaN film in the simultaneous Ag+ and Cu2+ detection reveal that GaN micropillars show three orders of magnitude higher stripping peak current than GaN film. It is assumed that the microarray morphology with large active area and the hydrophilia nature of GaN micropillars are responsible for the excellent sensitivity. This work will open up some opportunities for GaN nanostructure electrodes in the application of trace metal ions detection.

5.
Nanotechnology ; 31(3): 035706, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31557737

ABSTRACT

Atomic-scale images of MoS2 slabs supported on γ-Al2O3 were obtained by high-resolution scanning transmission electron microscopy equipped with a high angular annular dark field detector (HR STEM-HAADF). These observations, obtained for sulfide catalysts prepared with or without citric acid as a chelating agent, evidenced variations in morphology (shape) and size of the MoS2 nanoslabs, as detected indirectly by the adsorption of CO followed by infrared spectroscopy. Quantitative dispersion values and a morphology index (S-edge/M-edge ratio) were determined from the slabs observed. In this way, HR STEM-HAADF underlines that the addition of citric acid to Mo catalysts decreases the size of the particles and modifies the shape of the MoS2 nanoslabs from slightly truncated triangles to particles with a higher ratio of S-edge/M-edge. These finding are of great significance since tayloring the morphology of the slabs is a way to increase their catalytic activity and selectivity. Furthermore, this work demonstrated that the IR/CO method is a relevant approach to describe the MoS2 morphology of supported catalysts used in hydrotreatment processes for clean fuel production.

6.
Nanoscale Res Lett ; 14(1): 330, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31641871

ABSTRACT

Passivation is a key process for the optimization of silicon p-n junctions. Among the different technologies used to passivate the surface and contact interfaces, alumina is widely used. One key parameter is the thickness of the passivation layer that is commonly deposited using atomic layer deposition (ALD) technique. This paper aims at presenting correlated structural/electrical studies for the passivation effect of alumina on Si junctions to obtain optimal thickness of alumina passivation layer. High-resolution transmission electron microscope (HRTEM) observations coupled with energy dispersive X-ray (EDX) measurements are used to determine the thickness of alumina at atomic scale. The correlated electrical parameters are measured with both solar simulator and Sinton's Suns-Voc measurements. Finally, an optimum alumina thickness of 1.2 nm is thus evidenced.

7.
ACS Appl Mater Interfaces ; 10(33): 28003-28014, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30085643

ABSTRACT

Multiferroic biphase systems with robust ferromagnetic and ferroelectric response at room temperature would be ideally suitable for voltage-controlled nonvolatile memories. Understanding the role of strain and charges at interfaces is central for an accurate control of the ferroelectricity as well as of the ferromagnetism. In this paper, we probe the relationship between the strain and the ferromagnetic/ferroelectric properties in the layered CoFe2O4/BaTiO3 (CFO/BTO) model system. For this purpose, ultrathin epitaxial bilayers, ranging from highly strained to fully relaxed, were grown by molecular beam epitaxy on Nb:SrTiO3(001). The lattice characteristics, determined by X-ray diffraction, evidence a non-intuitive cross-correlation: the strain in the bottom BTO layer depends on the thickness of the top CFO layer and vice versa. Plastic deformation participates in the relaxation process through dislocations at both interfaces, revealed by electron microscopy. Importantly, the switching of the BTO ferroelectric polarization, probed by piezoresponse force microscopy, is found dependent on the CFO thickness: the larger is the latter, the easiest is the BTO switching. In the thinnest thickness regime, the tetragonality of BTO and CFO has a strong impact on the 3d electronic levels of the different cations, which were probed by X-ray linear dichroism. The quantitative determination of the nature and repartition of the magnetic ions in CFO, as well as of their magnetic moments, has been carried out by X-ray magnetic circular dichroism, with the support of multiplet calculations. While bulklike ferrimagnetism is found for 5-15 nm thick CFO layers with a magnetization resulting as expected from the Co2+ ions alone, important changes occur at the interface with BTO over a thickness of 2-3 nm because of the formation of Fe2+ and Co3+ ions. This oxidoreduction process at the interface has strong implications concerning the mechanisms of polarity compensation and coupling in multiferroic heterostructures.

8.
Nanoscale ; 9(16): 5212-5221, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28397937

ABSTRACT

Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)GaN∥(0001)sapphire and (101[combining macron]0)GaN∥(112[combining macron]0)sapphire. Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

9.
Nanoscale Res Lett ; 8(1): 31, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23324447

ABSTRACT

The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase.

10.
Nanoscale Res Lett ; 8(1): 43, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23336520

ABSTRACT

In this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C. The HfO2 phase demonstrates a pronounced crystallization in tetragonal phase upon 950°C annealing. Pr3+ emission appeared at TA = 950°C, and the highest efficiency of Pr3+ ion emission was detected upon a thermal treatment at 1,000°C. Analysis of the PLE spectra reveals an efficient energy transfer from matrix defects towards Pr3+ ions. It is considered that oxygen vacancies act as effective Pr3+ sensitizer. Finally, a PL study of undoped HfO2 and HfSiOx matrices is performed to evidence the energy transfer.

11.
Nanoscale Res Lett ; 6(1): 161, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21711673

ABSTRACT

In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

12.
Nanoscale Res Lett ; 6(1): 395, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21711930

ABSTRACT

This study investigates the influence of the film thickness on the silicon-excess-mediated sensitization of Erbium ions in Si-rich silica. The Er3+ photoluminescence at 1.5 µm, normalized to the film thickness, was found five times larger for films 1 µm-thick than that from 50-nm-thick films intended for electrically driven devices. The origin of this difference is shared by changes in the local density of optical states and depth-dependent interferences, and by limited formation of Si-based sensitizers in "thin" films, probably because of the prevailing high stress. More Si excess has significantly increased the emission from "thin" films, up to ten times. This paves the way to the realization of highly efficient electrically excited devices.

SELECTION OF CITATIONS
SEARCH DETAIL