Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664267

ABSTRACT

Prototyping analytical devices with three-dimensional (3D) printing techniques is becoming common in research laboratories. The attractiveness is associated with printers' price reduction and the possibility of creating customized objects that could form complete analytical systems. Even though 3D printing enables the rapid fabrication of electrochemical sensors, its wider adoption by research laboratories is hindered by the lack of reference material and the high "entry barrier" to the field, manifested by the need to learn how to use 3D design software and operate the printers. This review article provides insights into fused deposition modeling 3D printing, discussing key challenges in producing electrochemical sensors using currently available extrusion tools, which include desktop 3D printers and 3D printing pens. Further, we discuss the electrode processing steps, including designing, printing conditions, and post-treatment steps. Finally, this work shed some light on the current applications of such electrochemical devices that can be a reference material for new research involving 3D printing.

2.
Anal Bioanal Chem ; 416(9): 2031-2037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37470814

ABSTRACT

3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.

3.
ACS Appl Mater Interfaces ; 15(48): 56424-56432, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37982226

ABSTRACT

The concentration of environmental pollutants needs to be monitored constantly by reliable analytical methods since they pose a public health risk. Developing simple and affordable sensors for such pollutants can allow for large-scale monitoring economically. Here, we develop a simple electrochemical sensor for sulfanilamide (SFD) quantification using a phenolic resin substrate and a CO2 laser to pyrolyze the sensor geometry over the substrate. The sensors are modified with carbon nanotubes via a simple drop-casting procedure. The carbon nanotube loading effect the electrochemical performance toward a redox probe and analytical performance for SFD detection is investigated, showing no net benefit beyond 1 mg L-1 of carbon nanotubes. The effects of the modification on the SFD oxidation are shown to be more than just an electrode area effect and possibly attributed to the fast electron transfer kinetics of the carbon nanotubes. SFD detection is performed at small solution volumes under static (800 µL) and hydrodynamic conditions (3 mL) in a fully integrated, miniaturized batch-injection analyses cell. Both methods have a similar linear range from 10.0 to 115.0 µmol L-1 and high selectivity for SFD determination. Both systems are used to quantify SFD in real samples as a proof of concept, showcasing the proposed device's applicability as a sensor for environmental and public health monitoring of SFD.

4.
Mikrochim Acta ; 190(7): 276, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37368054

ABSTRACT

Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses' detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people's health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode's fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors' applications are critically presented.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Zika Virus Infection , Zika Virus , Humans , COVID-19/diagnosis , Nanostructures/chemistry , Biosensing Techniques/methods , Lab-On-A-Chip Devices , COVID-19 Testing
5.
Anal Chem ; 95(28): 10634-10643, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37347237

ABSTRACT

A simple fabrication method to make electrochemical sensors is reported. The electrodes were fabricated with a commercial filament based on polylactic acid and carbon black (PLA/CB). They were engineered with a three-dimensional (3D) printing pen and poly(methyl methacrylate) template. The optimization parameters included the thickness and diameters of the electrodes. The electrode diameter was restricted by the 3D printing pen's nozzle dimension, and larger diameters generated small cracks on the electrode surface, compromising their analytical signal. The electrode thickness can increase the electrical resistance, affecting their electrochemical response. The fabrication showed reproducibility (RSD = 4%). The electrode surface was easily renewed by sanding the electrodes, making them reusable. Additionally, the proposed sensor provided comparable electrochemical responses over traditional glassy carbon electrodes. Moreover, no (electro)chemical surface treatment was required for sensing applications due to the compromise between the thickness and diameters of the electrodes, effectively translating the filaments' electrical properties to resulting materials. The electrodes' analytical performance was shown for organic and inorganic species, including paraquat, Pb2+, and caffeic acid. As proof of concept, the analytical applicability was demonstrated for total polyphenolic quantification in tea samples. Therefore, this work provides an alternative to fabricating miniaturized electrodes, bringing valuable insights into PLA/CB 3D-printed sensors and opening possibilities for designing electrode arrays. Moreover, the proposed electrodes are promising platforms for paper-based microfluidic systems.

6.
Mikrochim Acta ; 190(5): 179, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37041400

ABSTRACT

Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.

7.
Anal Chim Acta ; 1185: 339067, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34711313

ABSTRACT

Voltammetry and amperometry are inexpensive and high-performance analytical techniques. However, their lack of selectivity limits their use in complex matrices such as biological, environmental, and food samples. Therefore, voltammetric and amperometric analyses of these samples usually require time-consuming and laborious sample pretreatments. In this study, we present a simple and cost-effective approach to fabricate a miniaturized electrochemical cell that can be easily coupled to a head space-like gas extraction procedure in such a way the sample pretreatment and voltammetric detection are performed in a single step. As a proof of concept, we have used the proposed system to quantify sulfite in beverage samples after its conversion to SO2(g). Despite the simplicity and low cost of the proposed system, it provided good analytical performance and a limit of detection of 4.0 µmol L-1 was achieved after only 10 min of extraction. The proposed system is quite versatile since it can be applied to quantify any volatile electroactive species. Also, the proposed system provides a unique way to assess real-time extraction curves, which are essential to study and optimize new gas extraction procedures. Therefore, the approach described in this study could contribute to both applied and fundamental Analytical Chemistry.


Subject(s)
Electrochemical Techniques , Sulfites , Beverages/analysis , Electrodes , Limit of Detection
8.
Anal Chim Acta ; 1147: 116-123, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33485570

ABSTRACT

This study reports a new electrochemical method for tryptamine determination using a paper-based microfluidic device and a thermoplastic electrode (TPE) as an amperometric detector. Tryptamine (Tryp) is a biogenic amine present in drinks and foods. Even though this compound has some beneficial effects on human health, the ingestion of foods with high concentrations of Tryp may be detrimental, which justifies the need for monitoring the Tryp levels. The TPEs were made from 50% carbon black and 50% polycaprolactone and characterized by cyclic voltammetry, demonstrating enhancement in the analytical response compared to other carbon composites. TPEs also showed a better antifouling effect for Tryp compared to conventional glassy carbon electrodes. Once characterized, the electrodes were incorporated into the microfluidic device to determine Tryp in water and cheese samples using amperometry. A linear range was achieved from 10 to 75 µmol L-1 with limits of detection and quantification of 3.2 and 10.5 µmol L-1, respectively. Therefore, this work shows promising findings of the electrochemical determination of Tryp, bringing valuable results regarding the electrochemical properties of thermoplastic composites.


Subject(s)
Electrochemical Techniques , Lab-On-A-Chip Devices , Carbon , Electrodes , Humans , Tryptamines
9.
ACS Sens ; 5(1): 274-281, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31898461

ABSTRACT

A simple and low-cost continuous-flow (CF) electrochemical paper-based analytical device (ePAD) coupled with thermoplastic electrodes (TPEs) was developed. The fast, continuous flow combined with flow injection analysis was made possible by adding two inlet reservoirs to the same paper-based hollow channel flowing over detection electrodes, terminating in a fan-shaped pumping reservoir. The upstream inlet reservoir was filled with buffer and provided constant flow through the device. Sample injections were performed by adding 2 µL of the sample to the downstream sample inlet. Differences in flow resistance resulted in sample plugs displacing buffer as the solution flowed over the working electrodes. The electrodes were fabricated by mixing carbon black and polycaprolactone (50% w/w). CF-TPE-ePADs were characterized with chronoamperometry using ferrocenylmethyl trimethylammonium as the electrochemical probe. Optimized flow rates and injection volumes gave analysis times roughly an order of magnitude faster than those of previously reported flow injection analysis ePADs. To demonstrate applicability, the CF-TPE-ePADs were used to quantify caffeic acid in three different tea samples. The proposed method had a linear range from 10 to 500 µmol L-1 and limits of detection and quantification of 2.5 and 8.3 µmol L-1, respectively. Our approach is promising for fabricating simple, inexpensive, yet high-performance, flow injection analysis devices using paper substrates and easy-to-make electrodes that do not require external mechanical pumping systems or complicated valves.


Subject(s)
Electrochemical Techniques/methods , Equipment Design/methods , Flow Injection Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...