Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 23(16): 4674-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23856050

ABSTRACT

The structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1' region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2' substituent of chromane-HEA(s) with polar substituents provided improvements in the compound's in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Chromans/chemistry , Drug Design , Enzyme Inhibitors/chemical synthesis , Binding Sites , Cells, Cultured , Ethylamines/chemical synthesis , Ethylamines/chemistry , Ethylamines/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 23(7): 1967-73, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23454015

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant. A structural rational for the observed selectivity is proposed.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridazines/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(7): 1974-7, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23453068

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial Parkinson's disease (PD). The kinase activity of this complex protein is increased by pathogenic mutations. Inhibition of LRRK2 kinase activity has therefore emerged as a promising approach for the treatment of PD. Herein we report our findings on a series of 4-alkylamino-7-aryl-3-cyanoquinolines that exhibit kinase inhibitory activity against both wild type and G2019S mutant LRRK2. Activity was determined in both biochemical and cellular assays. Compound 14 was further evaluated in an in vivo pharmacodynamic study and found to significantly inhibit Ser935 phosphorylation after oral dosing.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinolines/pharmacology , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mice, Knockout , Mice, Transgenic , Models, Molecular , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 23(7): 2181-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23465612

ABSTRACT

The structure-activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond. This work culminated in compounds such as 31, which possess good BACE-1 potency, excellent permeability and a low P-gp efflux ratio.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid/chemistry , Drug Design , Isoquinolines/pharmacology , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Catalysis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 23(1): 71-4, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23219325

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/metabolism , Animals , Binding Sites , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Molecular Docking Simulation , Mutation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Transfection
7.
Bioorg Med Chem Lett ; 21(19): 5791-4, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21885276

ABSTRACT

The structure-activity relationship (SAR) of a novel, potent and metabolically stable series of sulfonamide-pyrazoles that attenuate ß-amyloid peptide synthesis via γ-secretase inhibition is detailed herein. Sulfonamide-pyrazoles that are efficacious in reducing the cortical Aßx-40 levels in FVB mice via a single PO dose, as well as sulfonamide-pyrazoles that exhibit selectivity for inhibition of APP versus Notch processing by γ-secretase, are highlighted.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Inhibitory Concentration 50 , Mice , Mice, Inbred Strains , Structure-Activity Relationship , Sulfonamides/chemistry
8.
Bioorg Med Chem Lett ; 21(18): 5521-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21813278

ABSTRACT

The SAR of a series of brain penetrant, trisubstituted thiophene based JNK inhibitors with improved pharmacokinetic properties is described. These compounds were designed based on information derived from metabolite identification studies which led to compounds such as 42 with lower clearance, greater brain exposure and longer half life compared to earlier analogs.


Subject(s)
Brain/metabolism , Drug Design , Nerve Degeneration/prevention & control , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , Thiophenes/pharmacokinetics , Animals , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Dose-Response Relationship, Drug , Half-Life , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
9.
Bioorg Med Chem Lett ; 21(6): 1838-43, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316234

ABSTRACT

The SAR of a series of tri-substituted thiophene JNK3 inhibitors is described. By optimizing both the N-aryl acetamide region of the inhibitor and the 4-position of the thiophene we obtained single digit nanomolar compounds, such as 47, which demonstrated an in vivo effect on JNK activity when dosed orally in our kainic acid mouse model as measured by phospho-c-jun reduction.


Subject(s)
Brain/metabolism , MAP Kinase Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Administration, Oral , Drug Design , Hydrogen Bonding , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 21(1): 315-9, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21112785

ABSTRACT

In this Letter, we describe the discovery of selective JNK2 and JNK3 inhibitors, such as 10, that routinely exhibit >10-fold selectivity over JNK1 and >1000-fold selectivity over related MAPKs, p38α and ERK2. Substitution of the naphthalene ring affords an isoform selective JNK3 inhibitor, 30, with approximately 10-fold selectivity over both JNK1 and JNK2. A naphthalene ring penetrates deep into the selectivity pocket accounting for the differentiation amongst the kinases. Interestingly, the gatekeeper Met146 sulfide interacts with the naphthalene ring in a sulfur-π stacking interaction. Compound 38 ameliorates neurotoxicity induced by amyloid-ß in human cortical neurons. Lastly, we demonstrate how to install propitious in vitro CNS-like properties into these selective inhibitors.


Subject(s)
Aminopyridines/chemistry , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/chemistry , Protein Kinase Inhibitors/chemistry , Triazines/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/therapeutic use , Animals , Binding Sites , Central Nervous System/metabolism , Computer Simulation , Humans , Mice , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazines/therapeutic use
11.
Bioorg Med Chem Lett ; 20(24): 7303-7, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21071223

ABSTRACT

From high throughput screening, we discovered compound 1, the prototype for a series of disubstituted thiophene inhibitors of JNK which is selective towards closely related MAP kinases p38 and Erk2. Herein we describe the evolution of these compounds to a novel class of thiophene and thiazole JNK inhibitors that retain favorable solubility, permeability, and P-gp properties for development as CNS agents for treatment of neurodegeneration. Compound 61 demonstrated JNK3 IC(50)=77 nM and retained the excellent broad kinase selectivity observed for the series.


Subject(s)
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Quinolines/chemical synthesis , Thiazoles/chemistry , Thiophenes/chemistry , Animals , Drug Design , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology
12.
Bioorg Med Chem Lett ; 20(21): 6231-6, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20833041

ABSTRACT

In this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αß by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30mpk BID for 2.5days.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Alkylation , Alzheimer Disease , Animals , Brain/metabolism , Cell Line , Dogs , Drug Design , Guinea Pigs , Humans , Indicators and Reagents , Protease Inhibitors/pharmacokinetics , Protein Binding , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 20(20): 6034-9, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20822903
14.
Bioorg Med Chem Lett ; 20(16): 4789-94, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20634069

ABSTRACT

Herein we describe further evolution of hydroxyethylamine inhibitors of BACE-1 with enhanced permeability characteristics necessary for CNS penetration. Variation at the P2' position of the inhibitor with more polar substituents led to compounds 19 and 32, which retained the potency of more lipophilic analog 1 but with much higher observed passive permeability in MDCK cellular assay.


Subject(s)
Acetamides/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Butanols/chemistry , Cyclohexylamines/chemistry , Protease Inhibitors/chemistry , Acetamides/chemical synthesis , Acetamides/pharmacokinetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Butanols/chemical synthesis , Butanols/pharmacokinetics , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Cyclohexylamines/chemical synthesis , Cyclohexylamines/pharmacokinetics , Humans , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 19(22): 6386-91, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19811916

ABSTRACT

Using structure-guided design, hydroxyethylamine BACE-1 inhibitors were optimized to nanomolar Abeta cellular inhibition with selectivity against cathepsin-D. X-ray crystallography illuminated the S1' residues critical to this effort, which culminated in compounds 56 and 57 that exhibited potency and selectivity but poor permeability and high P-gp efflux.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Substrate Specificity
18.
Bioorg Med Chem Lett ; 19(8): 2179-85, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19297154

ABSTRACT

Systematic SAR studies of in vitro factor Xa inhibitory activity around compound 1 were performed by modifying each of the three phenyl rings. A class of highly potent, selective, efficacious and orally bioavailable direct factor Xa inhibitors was discovered. These compounds were screened in hERG binding assays to examine the effects of substitution groups on the hERG channel affinity. From the leading compounds, betrixaban (compound 11, PRT054021) has been selected as the clinical candidate for development.


Subject(s)
Anticoagulants/chemical synthesis , Anticoagulants/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Drug Discovery/methods , Factor Xa Inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Administration, Oral , Animals , Anticoagulants/administration & dosage , Benzamides/administration & dosage , Catalytic Domain/drug effects , Cell Line , Dogs , Dose-Response Relationship, Drug , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Factor Xa/metabolism , Humans , Macaca fascicularis , Pyridines/administration & dosage , Rabbits , Rats
19.
J Am Chem Soc ; 126(1): 48-9, 2004 Jan 14.
Article in English | MEDLINE | ID: mdl-14709053

ABSTRACT

Novel strategies are developed for an efficient formal synthesis of (-)-mycalamide A. The left-hand side (-)-7-benzoylpederic acid is synthesized from (2S,3S)-2,3-epoxybutane. The key features include a highly regioselective Ru-catalyzed alkene-alkyne coupling reaction and a novel way to control the challenging C(7) stereocenter. The right-hand side was synthesized from (R)-pantolactone. The complex trioxodecalin core is constructed with two Pd(0)-catalyzed O-pi-allyl cyclizations. The first one is chemoselective, while the second one is highly diastereoselective. Three additional steps would be required to complete a total synthesis of (-)-mycalamide A.


Subject(s)
Pyrans/chemical synthesis , Animals , Marine Toxins/chemical synthesis , Porifera/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...