Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38734995

ABSTRACT

Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.

2.
Photochem Photobiol Sci ; 23(3): 539-560, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457119

ABSTRACT

Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Porphyrins , Animals , Humans , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species , Staphylococcus aureus , Singlet Oxygen/chemistry , Plankton , Palladium/pharmacology , Photochemotherapy/methods , Anti-Infective Agents/chemistry , Biofilms , Oxygen , Mammals
3.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 30-35, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38015545

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. The tumor suppressor gene MT-CO1, and Kristen Rat Sarcoma Virus (KRAS), an oncogene are primarily responsible for controlling cell apoptosis, cell cycle arrest, and cell proliferation, and any irregularities in these genes could lead to cancer. This study aims to examine the expression of KRAS and MT-CO1 in CRC biopsy specimens and investigate their relationship with one another in CRC patients residing in the Erbil city of Kurdistan Region, Iraq. The study involved categorizing 42 sets of colorectal cancer tissues and their corresponding controls based on their types and patients' clinical characteristics. The expression of KRAS and MT-CO1 in the samples was assessed using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), with statistical significance set at p<0.05. The expression of KRAS was found to be significantly higher in CRC compared to the control (n=42, p=0.0001). On the other hand, the expression of MT-CO1 did not exhibit significant differences compared to the control group with a p-value of 0.12. Furthermore, the Chi-square and correlation analysis results depicted that MT-CO1 expression negatively correlates with KRAS expression (p= 0.0001, r= -0.047) in CRC tissues. In conclusion, the variation in the expression of KRAS and MT-CO1, and their correlations could potentially serve as a good indicator in the detection and prognosis of CRC, which might lead to better translational research on the same. However, for a better understanding of the underlying mechanisms, further analysis is required.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Oncogenes , Biopsy , Apoptosis , Colorectal Neoplasms/genetics
4.
Sci Rep ; 13(1): 18114, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872245

ABSTRACT

The selective inhibition of kinases from the diabetic kinome is known to promote the regeneration of beta cells and provide an opportunity for the curative treatment of diabetes. The effect can be achieved by carefully tailoring the selectivity of inhibitor toward a particular kinase, especially DYRK1A, previously associated with Down syndrome and Alzheimer's disease. Recently DYRK1A inhibition has been shown to promote both insulin secretion and beta cells proliferation. Here, we show that commonly available flavones are effective inhibitors of DYRK1A. The observed biochemical activity of flavone compounds is confirmed by crystal structures solved at 2.06 Å and 2.32 Å resolution, deciphering the way inhibitors bind in the ATP-binding pocket of the kinase, which is driven by the arrangement of hydroxyl moieties. We also demonstrate antidiabetic properties of these biomolecules and prove that they could be further improved by therapy combined with TGF-ß inhibitors. Our data will allow future structure-based optimization of the presented scaffolds toward potent, bioavailable and selective anti-diabetic drugs.


Subject(s)
Alzheimer Disease , Flavones , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Alzheimer Disease/drug therapy , Cell Proliferation , Protein Kinase Inhibitors/therapeutic use
5.
PLoS One ; 18(5): e0285208, 2023.
Article in English | MEDLINE | ID: mdl-37195917

ABSTRACT

The decreased ß-cell mass and impaired ß-cell functionality are the primary causes of diabetes mellitus (DM). Nevertheless, the underlying molecular mechanisms by which ß-cell growth and function are controlled are not fully understood. In this work, we show that leucettines, known to be DYRK1A kinase inhibitors, can improve glucose-stimulated insulin secretion (GSIS) in rodent ß-cells and isolated islets, as well as in hiPSC-derived ß-cells islets. We confirm that DYRK1A is expressed in murine insulinoma cells MIN6. In addition, we found that treatment with selected leucettines stimulates proliferation of ß-cells and promotes MIN6 cell cycle progression to the G2/M phase. This effect is also confirmed by increased levels of cyclin D1, which is highly responsive to proliferative signals. Among other leucettines, leucettine L43 had a negligible impact on ß-cell proliferation, but markedly impair GSIS. However, leucettine L41, in combination with LY364947, a, a potent and selective TGF-ß type-I receptor, significantly promotes GSIS in various cellular diabetic models, including MIN6 and INS1E cells in 2D and 3D culture, iPSC-derived ß-cell islets derived from iPSC, and isolated mouse islets, by increased insulin secretion and decreased glucagon level. Our findings confirm an important role of DYRK1A inhibitors as modulators of ß-cells function and suggested a new potential target for antidiabetic therapy. Moreover, we show in detail that leucettine derivatives represent promising antidiabetic agents and are worth further evaluation, especially in vivo.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Pancreatic Neoplasms , Mice , Animals , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Glucose/metabolism , Insulin, Regular, Human/metabolism , Pancreatic Neoplasms/metabolism , Organoids/metabolism
6.
Inorg Chem ; 61(48): 19261-19273, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36383699

ABSTRACT

Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.


Subject(s)
Carcinoma , Coordination Complexes , Humans , Male , Copper/chemistry , Liposomes , Prostate , Ions , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray
7.
J Med Chem ; 65(16): 11100-11110, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35969454

ABSTRACT

This work describes the traditional wet and green synthetic approaches, structural features, and extensive bioactivity study for a new coordination polymer [Ag(µ-PTA)(Df)(H2O)]n·3nH2O (1) that bears a silver(I) center, a 1,3,5-triaza-phosphaadamantane (PTA) linker, and a nonsteroidal anti-inflammatory drug, diclofenac (Df-). Compared to cisplatin, compound 1 exhibits both anti-inflammatory properties and very remarkable cytotoxicity toward various cancer cell lines with a high value of selectivity index. Additionally, the 3D model representing human pancreas/duct carcinoma (PANC-1) and human lung adenocarcinoma (A549) was designed and applied as a clear proof of the remarkable therapeutic potential of 1. The obtained experimental data indicate that 1 induces an apoptotic pathway via reactive oxygen species generation, targeting mitochondria due to their membrane depolarization. This study broadens a group of bioactive metal-organic networks and highlights the significant potential of such compounds in developing advanced therapeutic solutions.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Diclofenac/pharmacology , Humans , Pancreatic Neoplasms/drug therapy , Polymers/chemistry , Silver/chemistry , Silver/pharmacology , Water/chemistry , Pancreatic Neoplasms
8.
Biomater Adv ; 136: 212791, 2022 May.
Article in English | MEDLINE | ID: mdl-35929324

ABSTRACT

Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.


Subject(s)
Chitosan , Titanium , Alloys , Caffeic Acids , Chitosan/chemistry , Escherichia coli , Immersion , Static Electricity , Titanium/chemistry
9.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35745616

ABSTRACT

Immune checkpoint targeting immunotherapy has revolutionized the treatment of certain cancers in the recent years. Determination of the status of immune checkpoint expression in particular cancers may assist decision making. Here, we describe the development of a single-stranded aptamer-based molecular probe specifically recognizing human PD-L1. Target engaging aptamers are selected by iterative enrichment from a random ssDNA pool and the binding is characterized biochemically. Specificity and dose dependence is demonstrated in vitro in the cell culture using human kidney tumor cells (786-0), human melanoma cells (WM115 and WM266.4) and human glioblastoma LN18 cancer cells. The utility of the probe in vivo is demonstrated using two mouse tumor models, where we show that the probe exhibits excellent potential in imaging. We postulate that further development of the probe may allow universal imaging of different types of tumors depending on their PD-L1 status, which may find utility in cancer diagnosis.

10.
ACS Appl Mater Interfaces ; 14(13): 14981-14996, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35344328

ABSTRACT

Advances in the research of nanoparticles (NPs) with controlled charge and size are driven by their potential application in the development of novel technologies and innovative therapeutics. This work reports the synthesis, characterization, and comprehensive biological evaluation of AgNPs functionalized by N,N,N-trimethyl-(11-mercaptoundecyl) ammonium chloride (TMA) and trisodium citrate (TSC). The prepared AgNPs were well characterized in terms of their morphological, spectroscopic and functional properties and biological activities. The implementation of several complementary techniques allowed not only the estimation of the average particle size (from 3 to 40 nm depending on the synthesis procedure used) but also the confirmation of the crystalline nature of the NPs and their round shape. To prove the usefulness of these materials in biological systems, cellular uptake and cytotoxicity in microbial and mammalian cells were determined. Positively charged 10 nm Ag@TMA2 revealed antimicrobial activity against Gram-negative bacteria with a minimum inhibitory concentration (MIC) value of 0.17 µg/mL and complete eradication of Escherichia coli (7 logs) for Ag@TMA2 at a concentration of 0.50 µg/mL, whereas negatively charged 10 nm Ag@TSC1 was effective against Gram-positive bacteria (MIC = 0.05 µg/mL), leading to inactivation of Staphylococcus aureus at relatively low concentrations. In addition, the largest 40 nm Ag@TSC2 was shown to exhibit pronounced anticancer activity against murine colon carcinoma (CT26) and murine mammary gland carcinoma (4T1) cells cultured as 2D and 3D tumor models and reduced toxicity against human HaCaT keratinocytes. Among the possible mechanisms of AgNPs are their ability to generate reactive oxygen species, which was further evaluated in vitro and correlates well with cellular accumulation and overall activity of AgNPs. Furthermore, we confirmed the anticancer efficacy of the most potent Ag@TSC2 in hiPSC-derived colonic organoids and demonstrated that the NPs are biocompatible and applicable in vivo. A pilot study in BALB/c mice evidenced that the treatment with Ag@TSC2 resulted in temporary (>60 days) remission of CT26 tumors.


Subject(s)
Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mammals , Metal Nanoparticles/chemistry , Mice , Microbial Sensitivity Tests , Pilot Projects , Silver/chemistry , Silver/pharmacology
11.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35215281

ABSTRACT

Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.

12.
Adv Inorg Chem ; 79: 65-103, 2022.
Article in English | MEDLINE | ID: mdl-35095189

ABSTRACT

Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.

13.
Sci Rep ; 11(1): 23943, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907288

ABSTRACT

[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex-is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Peptides , Phosphines , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/drug therapy , Neoplasms/metabolism , Peptides/chemistry , Peptides/pharmacology , Phosphines/chemistry , Phosphines/pharmacology
14.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34571911

ABSTRACT

The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes ß-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived ß-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing ß-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human ß-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.


Subject(s)
Homeostasis , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/enzymology , Insulin/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Genes, Reporter , Harmine/pharmacology , Homeostasis/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/drug effects , Kinetics , Male , Mice , Models, Biological , NFATC Transcription Factors/metabolism , Organoids/drug effects , Organoids/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Dyrk Kinases
15.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445786

ABSTRACT

Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting ß-cell differentiation, and one of the most widely studied targets for ß-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of ß-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and ß-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Diabetes Mellitus/metabolism , Humans , Insulin-Secreting Cells/metabolism , Dyrk Kinases
16.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218103

ABSTRACT

Resistance of microorganisms to antibiotics has led to research on various therapeutic strategies with different mechanisms of action, including photodynamic inactivation (PDI). In this work, we evaluated a cationic, neutral, and anionic meso-tetraphenylporphyrin derivative's ability to inactivate the Gram-negative and Gram-positive bacteria in a planktonic suspension under blue light irradiation. The spectroscopic, physicochemical, redox properties, as well as reactive oxygen species (ROS) generation capacity by a set of photosensitizers varying in lipophilicity were investigated. The theoretical calculations were performed to explain the distribution of the molecular charges in the evaluated compounds. Moreover, logP partition coefficients, cellular uptake, and phototoxicity of the photosensitizers towards bacteria were determined. The role of a specific microbial efflux pump inhibitor, verapamil hydrochloride, in PDI was also studied. The results showed that E. coli exhibited higher resistance to PDI than S. aureus (3-5 logs) with low light doses (1-10 J/cm2). In turn, the prolongation of irradiation (up to 100 J/cm2) remarkably improved the inactivation of pathogens (up to 7 logs) and revealed the importance of photosensitizer photostability. The PDI potentiation occurs after the addition of KI (more than 3 logs extra killing). Verapamil increased the uptake of photosensitizers (especially in E. coli) due to efflux pump inhibition. This effect suggests that PDI is mediated by ROS, the electrostatic charge interaction, and the efflux of photosensitizers (PSs) regulated by multidrug-resistance (MDR) systems. Thus, MDR inhibition combined with PDI gives opportunities to treat more resistant bacteria.


Subject(s)
Bacteria/drug effects , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Reactive Oxygen Species/metabolism , Bacteria/metabolism , Bacteria/radiation effects , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/radiation effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/radiation effects , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/metabolism , Gram-Positive Bacteria/radiation effects , Hydrophobic and Hydrophilic Interactions , Light , Microscopy, Electron, Scanning , Molecular Structure , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Species Specificity , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Staphylococcus aureus/radiation effects
17.
Cancer Lett ; 492: 116-135, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32693200

ABSTRACT

The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.


Subject(s)
Cell Hypoxia/physiology , Neoplasms/drug therapy , Photochemotherapy/methods , Adenosine Triphosphate/metabolism , Catalase/metabolism , DNA/metabolism , Glutathione/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Neoplasms/metabolism , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Tumor Microenvironment
18.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316355

ABSTRACT

A class of amphiphilic photosensitizers for photodynamic therapy (PDT) was developed. Sulfonate esters of modified porphyrins bearing-F substituents in the ortho positions of the phenyl rings have adequate properties for PDT, including absorption in the red, increased cellular uptake, favorable intracellular localization, low cytotoxicity, and high phototoxicity against A549 (human lung adenocarcinoma) and CT26 (murine colon carcinoma) cells. Moreover, the role of type I and type II photochemical processes was assessed by fluorescent probes specific for various reactive oxygen species (ROS). The photodynamic effect is improved not only by enhanced cellular uptake but also by the high generation of both singlet oxygen and oxygen-centered radicals. All of the presented results support the idea that the rational design of photosensitizers for PDT can be further improved by better understanding the determinants affecting its therapeutic efficiency and explain how smart structural modifications can make them suitable photosensitizers for application in PDT.


Subject(s)
Photosensitizing Agents/chemistry , Porphyrins/chemistry , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Fluorescent Dyes/chemistry , Halogenation , Humans , Light , Mice , Microscopy, Confocal , Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/metabolism , Porphyrins/pharmacology , Porphyrins/therapeutic use , Reactive Oxygen Species/chemistry , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
19.
J Clin Med ; 9(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861531

ABSTRACT

: Photodynamic therapy (PDT) augments the host antitumor immune response, but the role of the PDT effect on the tumor microenvironment in dependence on the type of photosensitizer and/or therapeutic protocols has not been clearly elucidated. We employed three bacteriochlorins (F2BOH, F2BMet and Cl2BHep) of different polarity that absorb near-infrared light (NIR) and generated a large amount of reactive oxygen species (ROS) to compare the PDT efficacy after various drug-to-light intervals: 15 min. (V-PDT), 3h (E-PDT) and 72h (C-PDT). We also performed the analysis of the molecular mechanisms of PDT crucial for the generation of the long-lasting antitumor immune response. PDT-induced damage affected the integrity of the host tissue and developed acute (protocol-dependent) local inflammation, which in turn led to the infiltration of neutrophils and macrophages. In order to further confirm this hypothesis, a number of proteins in the plasma of PDT-treated mice were identified. Among a wide range of cytokines (IL-6, IL-10, IL-13, IL-15, TNF-α, GM-CSF), chemokines (KC, MCP-1, MIP1α, MIP1ß, MIP2) and growth factors (VEGF) released after PDT, an important role was assigned to IL-6. PDT protocols optimized for studied bacteriochlorins led to a significant increase in the survival rate of BALB/c mice bearing CT26 tumors, but each photosensitizer (PS) was more or less potent, depending on the applied DLI (15 min, 3 h or 72 h). Hydrophilic (F2BOH) and amphiphilic (F2BMet) PSs were equally effective in V-PDT (>80 cure rate). F2BMet was the most efficient in E-PDT (DLI = 3h), leading to a cure of 65 % of the animals. Finally, the most powerful PS in the C-PDT (DLI = 72 h) regimen turned out to be the most hydrophobic compound (Cl2BHep), allowing 100 % of treated animals to be cured at a light dose of only 45 J/cm2.

20.
Eur J Med Chem ; 184: 111740, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31605864

ABSTRACT

The increasingly limited therapeutic options for the treatment of infections caused by multi-resistant Gram-negative bacteria due to the alarming increase in bacteria resistance, renewed interest in photodynamic inactivation (PDI) of bacteria. We address PDI of multi-resistant bacteria with a new family of cationic tetra-imidazolyl phthalocyanines bearing a diversity of cationizing alkylic chain sizes, degrees of cationization and coordinating metals. The antimicrobial activities of the phthalocyanines under white light against Gram-positive and Gram-negative bacteria have remarkable differences in efficacy. We relate their spectroscopic and photophysical properties with the generation of reactive oxygen species (ROS), biological performance and structural features. We show that sub-micromolar concentrations of a Zn(II) tetra-ethyl cationic phthalocyanine reduce colonies of Gram-negative bacteria (E. coli, P. aeruginosa) and C. albicans by 7 log units while leaving mammalian cells unharmed. This is a new lead to address hard-to-treat localized infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indoles/pharmacology , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Indoles/chemistry , Isoindoles , Microbial Sensitivity Tests , Microscopy, Confocal , Molecular Structure , Optical Imaging , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Photochemical Processes , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...