Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Nano Lett ; 22(18): 7457-7466, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36108061

ABSTRACT

We demonstrate the fabrication of field-effect transistors based on single-layer MoS2 and a thin layer of BaTiO3 (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO2 dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices. Moreover, the ferroelectric character of BTO induces a robust hysteresis of the current vs gate voltage characteristics, attributed to its polarization switching. This hysteresis is strongly suppressed when the device is warmed up above the tetragonal-to-cubic transition temperature of BTO that leads to a ferroelectric-to-paraelectric transition. This hysteretic behavior is attractive for applications in memory storage devices. Our results open the door to the integration of a large family of complex oxides exhibiting strongly correlated physics in 2D-based devices.

2.
Adv Mater ; 34(1): e2103571, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34599777

ABSTRACT

The effect of uniaxial strain on the band structure of ZrSe3 , a semiconducting material with a marked in-plane structural anisotropy, is studied. By using a modified three-point bending test apparatus, thin ZrSe3 flakes are subjected to uniaxial strain along different crystalline orientations monitoring the effect of strain on their optical properties through micro-reflectance spectroscopy. The obtained spectra show excitonic features that blueshift upon uniaxial tension. This shift is strongly dependent on the direction along which the strain is being applied. When the flakes are strained along the b-axis, the exciton peak shifts at ≈60-95 meV %-1 , while along the a-axis, the shift only reaches ≈0-15 meV %-1 . Ab initio calculations are conducted to study the influence of uniaxial strain, applied along different crystal directions, on the band structure and reflectance spectra of ZrSe3 , exhibiting a remarkable agreement with the experimental results.

3.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610559

ABSTRACT

Considering that two-dimensional (2D) molybdenum trioxide has acquired more attention in the last few years, it is relevant to speed up thickness identification of this material. We provide two fast and non-destructive methods to evaluate the thickness of MoO3 flakes on SiO2/Si substrates. First, by means of quantitative analysis of the apparent color of the flakes in optical microscopy images, one can make a first approximation of the thickness with an uncertainty of ±3 nm. The second method is based on the fit of optical contrast spectra, acquired with micro-reflectance measurements, to a Fresnel law-based model that provides an accurate measurement of the flake thickness with ±2 nm of uncertainty.

4.
Open Biol ; 9(12): 190245, 2019 12.
Article in English | MEDLINE | ID: mdl-31847787

ABSTRACT

Specific neuropeptides regulate in arthropods the shedding of the old cuticle (ecdysis) followed by maturation of the new cuticle. In Drosophila melanogaster, the last ecdysis occurs at eclosion from the pupal case, with a post-eclosion behavioural sequence that leads to wing extension, cuticle stretching and tanning. These events are highly stereotyped and are controlled by a subset of crustacean cardioactive peptide (CCAP) neurons through the expression of the neuropeptide Bursicon (Burs). We have studied the role of the transcription factor Odd-paired (Opa) during the post-eclosion period. We report that opa is expressed in the CCAP neurons of the central nervous system during various steps of the ecdysis process and in peripheral CCAP neurons innerving the larval muscles involved in adult ecdysis. We show that its downregulation alters Burs expression in the CCAP neurons. Ectopic expression of Opa, or the vertebrate homologue Zic2, in the CCAP neurons also affects Burs expression, indicating an evolutionary functional conservation. Finally, our results show that, independently of its role in Burs regulation, Opa prevents death of CCAP neurons during larval development.


Subject(s)
Drosophila Proteins/genetics , Drosophila/growth & development , Drosophila/genetics , Homeodomain Proteins/genetics , Molting/genetics , Transcription Factors/genetics , Animals , Biomarkers , Central Nervous System/cytology , Central Nervous System/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Fluorescent Antibody Technique , Gene Expression , Homeodomain Proteins/metabolism , Larva , Neurons/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Phenotype , Transcription Factors/metabolism
5.
RSC Adv ; 9(71): 41531-41539, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-35541602

ABSTRACT

During the past decade, due to their large number of technological applications, a large number of research studies have been devoted to CdSe nanocrystal (NC) systems. Most of the studies of NC grown on substrates present in the literature correspond to a submonolayer coverage. However, interparticle interactions and, consequently, system morphology and its properties can change at higher coverage regime. We combine the X-ray diffraction technique at wide and small angle range with direct space AFM microscopy for the morphological characterization of samples in the monolayer vicinity. We conclude that the CdSe preserves its nanoparticle character and its pyramid shape. This nanoparticle character is also reflected in the CdSe Density Of States (DOS) measured by UPS. We have shown that the particle CdSe atoms are perfectly ordered. They form nanocrystals with a wurtzite structure, grown with an axial and lateral matching with the HOPG substrate lattice in a hexagonal arrangement up to the monolayer coverage, with a strong interaction with the substrate. Above the monolayer coverage this epitaxial match is looser, resulting in a 3D disorder growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...