Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Hematology ; 29(1): 2381169, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39046131

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with t(8;21) manifests as a diverse hematological malignancy. Although it was categorized into a favorable subtype, 30-40% of patients experience relapse. The objective of this research was to devise a nomogram for the accurate anticipation of both overall survival (OS) and cancer-specific survival (CSS) in t(8;21) AML. METHODS: From the Surveillance, Epidemiology, and End Results (SEER) database, individuals diagnosed with t(8;21) AML from 2000 to 2018 were selected. Prognostic factors for t(8;21) AML were identified using Cox regression analysis and Akaike Information Criterion (AIC), forming the basis for constructing prognostic nomograms. RESULTS: Key variables, including first primary tumor, age group, race, and chemotherapy, were identified and integrated into the nomogram. The C-index values for the nomograms predicting OS and CSS were 0.753 (validation: 0.765) and 0.764 (validation: 0.757), respectively. Ultimately, based on nomogram scores, patients were stratified into high-risk and low-risk groups, revealing significant disparities in both OS and CSS between these groups (P < 0.001). CONCLUSION: This study innovatively crafted nomograms, incorporating clinical and therapeutic variables, to forecast the 1-, 3-, and 5-year survival rates for individuals with t(8;21) AML.


Subject(s)
Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 8 , Leukemia, Myeloid, Acute , Nomograms , SEER Program , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Male , Female , Middle Aged , Adult , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 21/genetics , Translocation, Genetic , Prognosis , Adolescent , Aged , Young Adult
2.
Chin Med J (Engl) ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973237

ABSTRACT

BACKGROUND: Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS: Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4-overexpressing human induced pluripotent stem cell lines as well as pnpla4-overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS: Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS: Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.

4.
Article in English | MEDLINE | ID: mdl-38814173

ABSTRACT

OBJECTIVE: Varied expression of drug-metabolizing enzymes (DME) genes dictates the intensity and duration of drug response in cancer treatment. This study aimed to investigate the transcriptional profile of DMEs in tumor microenvironment (TME) at single-cell level and their impact on individual responses to anticancer therapy. METHODS: Over 1.3 million cells from 481 normal/tumor samples across 9 solid cancer types were integrated to profile changes in the expression of DME genes. A ridge regression model based on the PRISM database was constructed to predict the influence of DME gene expression on drug sensitivity. RESULTS: Distinct expression patterns of DME genes were revealed at single-cell resolution across different cancer types. Several DME genes were highly enriched in epithelial cells (e.g. GPX2, TST and CYP3A5) or different TME components (e.g. CYP4F3 in monocytes). Particularly, GPX2 and TST were differentially expressed in epithelial cells from tumor samples compared to those from normal samples. Utilizing the PRISM database, we found that elevated expression of GPX2, CYP3A5 and reduced expression of TST was linked to enhanced sensitivity of particular chemo-drugs (e.g. gemcitabine, daunorubicin, dasatinib, vincristine, paclitaxel and oxaliplatin). CONCLUSION: Our findings underscore the varied expression pattern of DME genes in cancer cells and TME components, highlighting their potential as biomarkers for selecting appropriate chemotherapy agents.

5.
Respir Res ; 25(1): 67, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317146

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.


Subject(s)
Butyrate Response Factor 1 , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Aging , Butyrate Response Factor 1/metabolism , Cellular Senescence/genetics , Fibroblasts/metabolism , Lung/metabolism , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
6.
Heliyon ; 10(1): e23167, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169774

ABSTRACT

Hyperactivation of ribosome biosynthesis (RiBi) is a hallmark of cancer, and targeting ribosome biogenesis has emerged as a potential therapeutic strategy. The depletion of TAF1B, a major component of selectivity factor 1 (SL1), disrupts the pre-initiation complex, preventing RNA polymerase I from binding ribosomal DNA and inhibiting the hyperactivation of RiBi. Here, we investigate the role of TAF1B, in regulating RiBi and proliferation in stomach adenocarcinoma (STAD). We disclosed that the overexpression of TAF1B correlates with poor prognosis in STAD, and found that knocking down TAF1B effectively inhibits STAD cell proliferation and survival in vitro and in vivo. TAF1B knockdown may also induce nucleolar stress, and promote c-MYC degradation in STAD cells. Furthermore, we demonstrate that TAF1B depletion impairs rRNA gene transcription and processing, leading to reduced ribosome biogenesis. Collectively, our findings suggest that TAF1B may serve as a potential therapeutic target for STAD and highlight the importance of RiBi in cancer progression.

7.
Front Oncol ; 13: 1203775, 2023.
Article in English | MEDLINE | ID: mdl-37645431

ABSTRACT

Background: TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown. Objective: In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC. Methods: We analyzed the differential expression and prognostic value of TAF1B in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA) database, tumor and paraneoplastic tissue samples from clinical hepatocellular carcinoma patients, and typical hepatocellular carcinoma. We detected cell proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western blotting (WB) detection of apoptosis marker proteins. Simultaneously, we investigated the influence of TAF1B knockdown on the function of the pre-initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays verified the interaction between the complexes and the effect on rDNA activity. Immunofluorescence assays measured the expression of marker proteins of nucleolus stress, fluorescence in situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated the role of p53 and miR-101 in modulating nucleolar stress and apoptosis. Finally, the impact of TAF1B knockdown on tumor growth, apoptosis, and p53 expression was observed in xenograft tumors. Result: We identified that TAF1B was highly expressed in hepatocellular carcinoma and associated with poor prognosis in HCC patients. TAF1B depletion modulated nucleolar stress and apoptosis in hepatocellular carcinoma cells through positive and negative feedback from p53-miR-101. RNA polymerase I transcription repression triggered post-transcriptional activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively feeds back through direct inhibition of the p53-mediated PARP pathway. Conclusion: These findings broaden our comprehension of the function of TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer new biomarkers for exploring prospective therapeutic targets in HCC.

8.
Blood Adv ; 7(13): 3099-3112, 2023 07 11.
Article in English | MEDLINE | ID: mdl-36912760

ABSTRACT

The effect of aerobic glycolysis remains elusive in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Increasing evidence has revealed that dysregulation of deubiquitination is involved in glycolysis, by targeting glycolytic rate-limiting enzymes. Here, we demonstrated that upregulated deubiquitinase ubiquitin-specific peptidase 1 (USP1) expression correlated with poor prognosis in pediatric primary T-ALL samples. USP1 depletion abolished cellular proliferation and attenuated glycolytic metabolism. In vivo experiments showed that USP1 suppression decreased leukemia progression in nude mice. Inhibition of USP1 caused a decrease in both mRNA and protein levels in lactate dehydrogenase A (LDHA), a critical glycolytic enzyme. Moreover, USP1 interacted with and deubiquitinated polo-like kinase 1 (PLK1), a critical regulator of glycolysis. Overexpression of USP1 with upregulated PLK1 was observed in most samples of patients with T-ALL. In addition, PLK1 inhibition reduced LDHA expression and abrogated the USP1-mediated increase of cell proliferation and lactate level. Ectopic expression of LDHA can rescue the suppressive effect of USP1 silencing on cell growth and lactate production. Pharmacological inhibition of USP1 by ML323 exhibited cell cytotoxicity in human T-ALL cells. Taken together, our results demonstrated that USP1 may be a promising therapeutic target in pediatric T-ALL.


Subject(s)
L-Lactate Dehydrogenase , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Child , Humans , Mice , Cell Line, Tumor , Disease Progression , Glycolysis/genetics , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5/metabolism , Lactates , Mice, Nude , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/metabolism , Ubiquitin-Specific Proteases/metabolism , Polo-Like Kinase 1
9.
Cancer ; 129(11): 1691-1703, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36943767

ABSTRACT

BACKGROUND: Contemporary risk-directed treatment has improved the outcome of patients with acute lymphoblastic leukemia (ALL) and TCF3::PBX1 fusion. In this study, the authors seek to identify prognostic factors that can be used to further improve outcome. METHODS: The authors studied 384 patients with this genotype treated on Chinese Children's Cancer Group ALL-2015 protocol between January 1, 2015 and December 31, 2019. All patients provisionally received intensified chemotherapy in the intermediate-risk arm without prophylactic cranial irradiation; those with high minimal residual disease (MRD) ≥1% at day 46 (end) of remission induction were candidates for hematopoietic cell transplantation. RESULTS: The overall 5-year event-free survival was 84.4% (95% confidence interval [CI], 80.6-88.3) and 5-year overall survival 88.9% (95% CI, 85.5-92.4). Independent factors associated with lower 5-year event-free survival were male sex (80.4%, [95% CI, 74.8-86.4] vs. 88.9%, [95% CI, 84.1-93.9] in female, p = .03) and positive day 46 MRD (≥0.01%) (62.1%, [95% CI, 44.2-87.4] vs. 87.1%, [95% CI, 83.4-90.9] in patients with negative MRD, p < .001). The presence of testicular leukemia at diagnosis (n = 10) was associated with particularly dismal 5-year event-free survival (33.3% [95% CI, 11.6-96.1] vs. 83.0% [95% CI, 77.5-88.9] in the other 192 male patients, p < .001) and was an independent risk factor (hazard ratio [HR], 5.7; [95% CI, 2.2-14.5], p < .001). CONCLUSIONS: These data suggest that the presence of positive MRD after intensive remission induction and testicular leukemia at diagnosis are indicators for new molecular therapeutics or immunotherapy in patients with TCF3::PBX1 ALL.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Male , Female , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Remission Induction , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm, Residual/drug therapy , Disease-Free Survival , Pre-B-Cell Leukemia Transcription Factor 1 , Basic Helix-Loop-Helix Transcription Factors/genetics
10.
Nucleic Acids Res ; 51(6): e32, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36715337

ABSTRACT

Protein-DNA damage interactions are critical for understanding the mechanism of DNA repair and damage response. However, due to the relatively random distributions of UV-induced damage and other DNA bulky adducts, it is challenging to measure the interactions between proteins and these lesions across the genome. To address this issue, we developed a new method named Protein-Associated DNA Damage Sequencing (PADD-seq) that uses Damage-seq to detect damage distribution in chromatin immunoprecipitation-enriched DNA fragments. It is possible to delineate genome-wide protein-DNA damage interactions at base resolution with this strategy. Using PADD-seq, we observed that RNA polymerase II (Pol II) was blocked by UV-induced damage on template strands, and the interaction declined within 2 h in transcription-coupled repair-proficient cells. On the other hand, Pol II was clearly restrained at damage sites in the absence of the transcription-repair coupling factor CSB during the same time course. Furthermore, we used PADD-seq to examine local changes in H3 acetylation at lysine 9 (H3K9ac) around cisplatin-induced damage, demonstrating the method's broad utility. In conclusion, this new method provides a powerful tool for monitoring the dynamics of protein-DNA damage interaction at the genomic level, and it encourages comprehensive research into DNA repair and damage response.


Subject(s)
DNA Damage , Genetic Techniques , Chromosome Mapping , DNA/genetics , DNA/metabolism , DNA Adducts , DNA Repair/genetics , Transcription Factors/genetics
11.
Front Oncol ; 12: 989366, 2022.
Article in English | MEDLINE | ID: mdl-36059682

ABSTRACT

Background: Myeloid sarcoma (MS) is a rare hematological tumor that presents with extramedullary tumor masses comprising myeloid blasts. A controversial issue is whether MS involving normal hematopoietic sites (liver, spleen, and lymph nodes) should be excluded in future studies. We aimed to compare MS characteristics and outcomes involving hematopoietic and non-hematopoietic sites and construct a prognostic nomogram exclusively for the latter. Methods: Data from patients diagnosed with MS between 2000 and 2018 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. According to the primary site, patients were classified as having MS involving hematopoietic sites (hMS) or non-hematopoietic sites (eMS). Clinical characteristics and survival outcomes were compared between the two groups using Wilcoxon, chi-square, and log-rank tests. Cox regression analysis was used to identify eMS prognostic factors to establish prognostic nomograms. The models' efficiency and value were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results: In total, 694 patients were enrolled, including 86 with hMS and 608 with eMS. There were no sex, race or marital status distribution differences between the two groups. Patients with eMS had better overall and cancer-specific survival rates than those with hMS. Additionally, prognostic factor effects differed between the two groups. Patients with eMS were randomly divided into the training (number of patiens, n=425) and validation cohorts (n=183). Age, first primary tumor, primary site, and chemotherapy were used to establish nomograms. The C-index values of overall survival (OS) and cancer-specific survival (CSS) nomograms were 0.733 (validation: 0.728) and 0.722 (validation: 0.717), respectively. Moreover, ROC, calibration curves, and DCA confirmed our models' good discrimination and calibration ability and potential clinical utility value. Conclusion: Our study described the differences between patients with eMS and those with hMS. Moreover, we developed novel nomograms based on clinical and therapeutic factors to predict patients with eMS' 1-, 3- and 5-year survival rates.

12.
Front Oncol ; 12: 915833, 2022.
Article in English | MEDLINE | ID: mdl-36003795

ABSTRACT

Pediatric acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts, and it is divided into the AMKL patients with Down syndrome (DS-AMKL) and AMKL patients without DS (non-DS-AMKL). Pediatric non-DS-AMKL is a heterogeneous disease with extremely poor outcome. We performed single-cell RNA sequencing (scRNA-seq) of the bone marrow from two CBFA2T3-GLIS2 fusion-positive and one RBM15-MKL1 fusion-positive non-DS-AMKL children. Meanwhile, we downloaded the scRNA-seq data of normal megakaryocyte (MK) cells of the fetal liver and bone marrow from healthy donors as normal controls. We conducted cell clustering, cell-type identification, inferCNV analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Monocle2 analysis to investigate the intratumoral heterogeneity of AMKL. Using canonical markers, we identified and characterized the abnormal blasts and other normal immune cells from three AMKL samples. We found intratumoral heterogeneity of AMKL in various cell-type proportions, malignant cells' diverse copy number variations (CNVs), maturities, significant genes expressions, and enriched pathways. We also identified potential markers for pediatric AMKL, namely, RACK1, ELOB, TRIR, NOP53, SELENOH, and CD81. Our work offered insight into the heterogeneity of pediatric acute megakaryoblastic leukemia and established the single-cell transcriptomic landscape of AMKL for the first time.

13.
Clin Transl Med ; 12(7): e941, 2022 07.
Article in English | MEDLINE | ID: mdl-35808830

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. METHODS: A total of 1320 unrelated CHD patients were enrolled in our study. Exome-wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat-containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR-targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA-seq and co-immunoprecipitation. RESULTS: Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non-coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle-regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. CONCLUSIONS: WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.


Subject(s)
Cell Cycle Proteins , Heart Defects, Congenital , Heart Septal Defects, Ventricular , Myocytes, Cardiac , Tetralogy of Fallot , Animals , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division , Exome , Heart Defects, Congenital/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Tetralogy of Fallot/genetics , Zebrafish/genetics , Zebrafish/metabolism
14.
Cell Death Dis ; 13(7): 620, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851002

ABSTRACT

Aplastic anemia (AA) is a blood disorder resulted from over-activated T-cell related hematopoietic failure, with the characterization of hypocellularity and enhanced adipogenic differentiation of mesenchymal stroma cells (MSCs) in bone marrow (BM). However, little is known about the relationship between immune imbalance and polarized adipogenic abnormity of BM microenvironment in this disease entity. In the present study, we differentiated BM-MSCs into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation. Activated CD8+ T cells and interferon-γ (IFN-γ) were found to stimulate adipogenesis of BM-MSCs either in vitro or in vivo of AA mouse model. Interestingly, myeloid-derived suppressive cells (MDSCs), one of the immune-regulating populations, were decreased within BM of AA mice. We found that it was not CD11b+Ly6G+Ly6C- granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+ monocytic-MDSCs (mMDSCs) inhibiting both T cell proliferation and IFN-γ production via inducible nitric oxide synthetase (iNOS) pathway. Single-cell RNA-sequencing (scRNA-seq) of AA- and mMDSCs-treated murine BM cells revealed that mMDSCs transfusion could reconstitute BM hematopoietic progenitors by inhibiting T cells population and signature cytokines and decreasing immature Adipo-Cxcl12-abundant reticular cells within BM. Multi-injection of mMDSCs into AA mice reduced intra-BM T cells infiltration and suppressed BM adipogenesis, which subsequently restored the intra-BM immune balance and eventually prevented pancytopenia and hypo-hematopoiesis. In conclusion, adoptive transfusion of mMDSCs might be a novel immune-regulating strategy to treat AA, accounting for not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment.


Subject(s)
Anemia, Aplastic , Adipogenesis , Animals , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , CD8-Positive T-Lymphocytes , Mice
15.
J Natl Cancer Inst ; 114(9): 1287-1295, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35575404

ABSTRACT

BACKGROUND: There is growing evidence for the inherited basis of susceptibility to childhood acute lymphoblastic leukemia (ALL). Genome-wide association studies have identified non-coding ALL risk variants at the ARID5B gene locus, but their exact functional effects and the molecular mechanism linking ARID5B to B-cell ALL leukemogenesis remain largely unknown. METHODS: We performed targeted sequencing of ARID5B in germline DNA of 5008 children with ALL. Variants were evaluated for association with ALL susceptibility using 3644 patients from the UK10K cohort as non-ALL controls, under an additive model. Cis-regulatory elements in ARID5B were systematically identified using dCas9-KRAB-mediated enhancer interference system enhancer screen in ALL cells. Disruption of transcription factor binding by ARID5B variant was predicted informatically and then confirmed using chromatin immunoprecipitation and coimmunoprecipitation. ARID5B variant association with hematological traits was examined using UK Biobank dataset. All statistical tests were 2-sided. RESULTS: We identified 54 common variants in ARID5B statistically significantly associated with leukemia risk, all of which were noncoding. Six cis-regulatory elements at the ARID5B locus were discovered using CRISPR-based high-throughput enhancer screening. Strikingly, the top ALL risk variant (rs7090445, P = 5.57 × 10-45) is located precisely within the strongest enhancer element, which is also distally tethered to the ARID5B promoter. The variant allele disrupts the MEF2C binding motif sequence, resulting in reduced MEF2C affinity and decreased local chromosome accessibility. MEF2C influences ARID5B expression in ALL, likely via a transcription factor complex with RUNX1. Using the UK Biobank dataset (n = 349 861), we showed that rs7090445 was also associated with lymphocyte percentage and count in the general population (P = 8.6 × 10-22 and 2.1 × 10-18, respectively). CONCLUSIONS: Our results indicate that ALL risk variants in ARID5B function by modulating cis-regulatory elements at this locus.


Subject(s)
Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors/metabolism , Child , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics
16.
Leuk Lymphoma ; 63(10): 2453-2460, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35617527

ABSTRACT

This retrospective single-center study was to evaluate the expression of TCF3 protein in pediatric Burkitt lymphomas (pBLs) and analyze its relations with clinical characteristics and prognosis. A total of 58 pBLs and 30 reactive hyperplastic lymphadenites (RH) were recruited. The high expression rate of TCF3 was 67.24% in pBLs, significantly higher than that in the RHs (36.67%, p = .01), which was consistent with the findings in biopsy specimens from mRNA and protein level, respectively. The expression of TCF3 was significantly associated with tumor localization and size. A total of 54 patients having received short-intensive chemotherapy had a median follow-up of 54.15 months (range: 1-111 months). Log-rank test of Kaplan-Meier survival curves indicated an inverse correlation of TCF3 expression with the overall survival (OS) and event-free survival (EFS). Univariate analysis showed that high TCF3 expression was significantly associated with poor EFS. The result of multivariate COX regression analysis indicated that the TCF3 expression was an independent prognostic factor for EFS.


Subject(s)
Burkitt Lymphoma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Basic Helix-Loop-Helix Transcription Factors , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Child , Disease-Free Survival , Humans , Prognosis , RNA, Messenger , Retrospective Studies
17.
Pediatr Blood Cancer ; 69(8): e29724, 2022 08.
Article in English | MEDLINE | ID: mdl-35441457

ABSTRACT

The prognosis of patients with T-cell acute lymphoblastic leukemia (T-ALL) has been largely lacked behind than that of patients with B-cell ALL, especially in refractory or relapsed cases. Here, we describe a 4.7-year-old male child with TCF-SPI1-postitve T-ALL who developed refractoriness disease after a seven drugs-conventional therapy. Several studies have suggested the therapeutic potential of dasatinib in refractory T-ALL. Actually, dasatinib-included therapy dramatically reduces the leukemic burden and re-induces this patient into complete remission without systemic adverse events. Although this is a single exceptional case, the translational potential evidence of dasatinib in specific T-ALL subtype should not be under-estimated.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Child, Preschool , Dasatinib/therapeutic use , Humans , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , Remission Induction , T Cell Transcription Factor 1 , T-Lymphocytes
18.
Nat Cell Biol ; 24(3): 353-363, 2022 03.
Article in English | MEDLINE | ID: mdl-35256775

ABSTRACT

As one of the most induced genes in activated macrophages, immune-responsive gene 1 (IRG1) encodes a mitochondrial metabolic enzyme catalysing the production of itaconic acid (ITA). Although ITA has an anti-inflammatory property, the underlying mechanisms are not fully understood. Here we show that ITA is a potent inhibitor of the TET-family DNA dioxygenases. ITA binds to the same site on TET2 as the co-substrate α-ketoglutarate, inhibiting TET2 catalytic activity. Lipopolysaccharide treatment, which induces Irg1 expression and ITA accumulation, inhibits Tet activity in macrophages. Transcriptome analysis reveals that TET2 is a major target of ITA in suppressing lipopolysaccharide-induced genes, including those regulated by the NF-κB and STAT signalling pathways. In vivo, ITA decreases the levels of 5-hydroxymethylcytosine, reduces lipopolysaccharide-induced acute pulmonary oedema as well as lung and liver injury, and protects mice against lethal endotoxaemia, depending on the catalytic activity of Tet2. Our study thus identifies ITA as an immune modulatory metabolite that selectively inhibits TET enzymes to dampen the inflammatory responses.


Subject(s)
Dioxygenases , Animals , DNA , Dioxygenases/metabolism , Lipopolysaccharides/toxicity , Mice , Succinates/metabolism , Succinates/pharmacology
19.
Clin Transl Med ; 12(3): e757, 2022 03.
Article in English | MEDLINE | ID: mdl-35297204

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a clinically and biologically heterogeneous plasma-cell malignancy. Despite extensive research, disease heterogeneity and relapse remain a big challenge in MM therapeutics. We tried to dissect this disease and identify novel biomarkers for patient stratification and treatment outcome prediction by applying single-cell technology. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and variable-diversity-joining regions-targeted sequencing (scVDJ-seq) concurrently on bone marrow samples from a cohort of 18 patients with newly diagnosed MM (NDMM; n = 12) or refractory/relapsed MM (RRMM; n = 6). We analysed the malignant clonotypes using scVDJ-seq data and conducted data integration and cell-type annotation through the CCA algorithm based on gene expression profiling. Furthermore, we identified disease status-specific genes and modules by comparison of NDMM and RRMM datasets and explored the findings in a larger MM cohort from the MMRF CoMMpass study. RESULTS: We found that all the myeloma cells in either diagnosed or relapsed samples were dominated by a major clone, with a few subclones in several samples (n = 5). Next, we investigated the universal transcriptional features of myeloma cells and identified eight meta-programs correlated with this disease, especially meta-programs 1 and 8 (M1 and M8), which were the most significant and related to cell cycle and stress response, respectively. Furthermore, we classified the malignant plasma cells into eight clusters and found that the cell numbers in clusters 2/6/7 were exclusively higher in relapsed samples. Besides, we identified several attractive candidates for biomarkers (e.g. SMAD1 and STMN1) associated with disease progression and relapse in our dataset and related to overall survival in the CoMMpass dataset. CONCLUSIONS: Our data provide insights into the heterogeneity of MM as well as highlight the relevance of intra-tumour heterogeneity and discover novel biomarkers that might be a potent therapy.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Neoplasm Recurrence, Local/genetics , Prognosis , RNA-Seq , Exome Sequencing
20.
J Hepatol ; 77(2): 453-466, 2022 08.
Article in English | MEDLINE | ID: mdl-35292350

ABSTRACT

BACKGROUND & AIMS: The liver is a metabolically active organ and is also 'tolerogenic', exhibiting sophisticated mechanisms of immune regulation that prevent pathogen attacks and tumorigenesis. How metabolism impacts the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains understudied. METHODS: We investigated the role of the metabolic regulator SIRT5 in HCC development by conducting metabolomic analysis, gene expression profiling, flow cytometry and immunohistochemistry analyses in oncogene-induced HCC mouse models and human HCC samples. RESULTS: We show that SIRT5 is downregulated in human primary HCC samples and that Sirt5 deficiency in mice synergizes with oncogenes to increase bile acid (BA) production, via hypersuccinylation and increased BA biosynthesis in the peroxisomes of hepatocytes. BAs act as a signaling mediator to stimulate their nuclear receptor and promote M2-like macrophage polarization, creating an immunosuppressive TME that favors tumor-initiating cells (TICs). Accordingly, high serum levels of taurocholic acid correlate with low SIRT5 expression and increased M2-like tumor-associated macrophages (TAMs) in HCC patient samples. Finally, administration of cholestyramine, a BA sequestrant and FDA-approved medication for hyperlipemia, reverses the effect of Sirt5 deficiency in promoting M2-like polarized TAMs and liver tumor growth. CONCLUSIONS: This study uncovers a novel function of SIRT5 in orchestrating BA metabolism to prevent tumor immune evasion and suppress HCC development. Our results also suggest a potential strategy of using clinically proven BA sequestrants for the treatment of patients with HCC, especially those with decreased SIRT5 and abnormally high BAs. LAY SUMMARY: Hepatocellular caricinoma (HCC) development is closely linked to metabolic dysregulation and an altered tumor microenvironment. Herein, we show that loss of the metabolic regulator Sirt5 promotes hepatocarcinogenesis, which is associated with abnormally elevated bile acids and subsequently an immunosuppressive microenvironment that favors HCC development. Targeting this mechanism could be a promising clinical strategy for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuins , Animals , Bile Acids and Salts , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Sirtuins/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL