Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791555

ABSTRACT

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Subject(s)
Anorexia Nervosa , Fatty Acids , Humans , Female , Anorexia Nervosa/metabolism , Adult , Fatty Acids/metabolism , Young Adult , Lipogenesis , Eicosapentaenoic Acid/metabolism , Lauric Acids/metabolism , Fatty Acid Elongases/metabolism , Adolescent , Fatty Acid Desaturases/metabolism , Case-Control Studies , Fatty Acids, Unsaturated
2.
Arthritis Rheumatol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508862

ABSTRACT

OBJECTIVE: Oxylipins are bioactive lipids derived from polyunsaturated fatty acids (PUFAs) that modulate inflammation and may remain overexpressed in refractory synovitis. In plasma, they could also be biomarkers of synovial pathology. The aim of this study is to determine if synovial oxylipins in inflamed joints correlate with plasma oxylipins and with synovial histologic patterns. METHODS: Patients with established rheumatoid or psoriatic arthritis with active disease despite treatment were recruited, and paired synovial tissue (ST) and plasma were collected. Oxylipins were determined by liquid chromatography with tandem mass spectrometry and were classified into groups according to their PUFA precursor and enzyme. The expression of CD20, CD68, CD3, and CD138 was obtained to describe synovial histology. Cell-specific expression of oxylipin-related genes was identified by examining available synovial single-cell RNA sequencing data. RESULTS: We included a total of 32 ST and 26 paired-plasma samples. A total of 71 oxylipins were identified in ST, but only 24 were identified in plasma. Only levels of 9,10-dihydroxyoctadecenoic acid and tetranor-Prostaglandin FM had a significant positive correlation between plasma and ST. Several oxylipins and oxylipin-related genes were differentially expressed among synovial phenotypes. Specifically, several 5-lipoxygenase (LOX)-derived oxylipins were statistically elevated in the lympho-myeloid phenotype and associated with B cell expression in rheumatoid arthritis samples. CONCLUSION: The lack of correlation between ST and plasma oxylipins suggests that ST lipid profiling better characterizes active pathways in treated joints. Synovial 5-LOX-derived oxylipins were highly expressed in lympho-myeloid-enriched synovium. Combination therapy with 5-LOX inhibitors to improve refractory inflammation may be needed in patients with this histologic group.

3.
Vet Pathol ; 61(2): 288-297, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37842940

ABSTRACT

Pedigree analysis, clinical, gross, microscopic, ultrastructural, and lipidomic findings in 4 female superb bird-of-paradise (SBOP, Lophorina superba) siblings led to the diagnosis of a primary inherited glycerolipid storage disease. These birds were the offspring of a related breeding pair (inbreeding coefficient = 0.1797) and are the only known SBOPs to display this constellation of lesions. The birds ranged from 0.75 to 4.3 years of age at the time of death. Two birds were euthanized and 1 died naturally due to the disease, and 1 died of head trauma with no prior clinical signs. Macroscopic findings included hepatomegaly and pallor (4/4), cardiac and renal pallor (2/4), and coelomic effusion (1/4). Microscopic examination found marked tissue distortion due to cytoplasmic lipid vacuoles in hepatocytes (4/4), cardiomyocytes (4/4), renal tubular epithelial cells (4/4), parathyroid gland principal cells (2/2), exocrine pancreatic cells (3/3), and the glandular cells of the ventriculus and proventriculus (3/3). Ultrastructurally, the lipids were deposited in single to coalescing or fused droplets lined by an inconspicuous or discontinuous monolayer membrane. Lipidomic profiling found that the cytoplasmic lipid deposits were primarily composed of triacylglycerols. Future work, including sequencing of the SBOP genome and genotyping, will be required to definitively determine the underlying genetic mechanism of this disease.


Subject(s)
Pallor , Siblings , Animals , Female , Humans , Pallor/pathology , Pallor/veterinary , Stomach , Proventriculus/pathology , Lipids
4.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677774

ABSTRACT

Oxylipins derived from n-3 fatty acids are suggested as the link between these fatty acids and reduced inflammation. The aim of the present study was to explore the effect of a randomized controlled cross-over intervention on oxylipin patterns in erythrocytes. Twenty-three women with rheumatoid arthritis completed 2 × 11-weeks exchanging one cooked meal per day, 5 days a week, for a meal including 75 g blue mussels (source for n-3 fatty acids) or 75 g meat. Erythrocyte oxylipins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were analyzed with multivariate data analysis. Orthogonal projections to latent structures (OPLS) with effect projections and with discriminant analysis were performed to compare the two diets' effects on oxylipins. Wilcoxon signed rank test was used to test pre and post values for each dietary period as well as post blue-mussel vs. post meat. The blue-mussel diet led to significant changes in a few oxylipins from the precursor fatty acids arachidonic acid and dihomo-É£-linolenic acid. Despite significant changes in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and free EPA in erythrocytes in the mussel group, no concurrent changes in their oxylipins were seen. Further research is needed to study the link between n-3 fatty-acid intake, blood oxylipins, and inflammation.


Subject(s)
Arthritis, Rheumatoid , Fatty Acids, Omega-3 , Humans , Female , Oxylipins/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Fatty Acids/analysis , Fatty Acids, Omega-3/analysis , Eicosapentaenoic Acid/analysis , Docosahexaenoic Acids/analysis , Erythrocytes/chemistry , Inflammation
5.
Sci Rep ; 12(1): 19764, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396724

ABSTRACT

Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation.


Subject(s)
Appendix , Fatty Acids , Humans , Stearates , Appendectomy , Chromatography, Gas
6.
Cell Rep ; 40(13): 111415, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170811

ABSTRACT

Sphingolipids play important signaling and structural roles in cells. Here, we find that during de novo sphingolipid biosynthesis, a toxic metabolite is formed with critical implications for cancer cell survival. The enzyme catalyzing the first step in this pathway, serine palmitoyltransferase complex (SPT), is upregulated in breast and other cancers. SPT is dispensable for cancer cell proliferation, as sphingolipids can be salvaged from the environment. However, SPT activity introduces a liability as its product, 3-ketodihydrosphingosine (3KDS), is toxic and requires clearance via the downstream enzyme 3-ketodihydrosphingosine reductase (KDSR). In cancer cells, but not normal cells, targeting KDSR induces toxic 3KDS accumulation leading to endoplasmic reticulum (ER) dysfunction and loss of proteostasis. Furthermore, the antitumor effect of KDSR disruption can be enhanced by increasing metabolic input (via high-fat diet) to allow greater 3KDS production. Thus, de novo sphingolipid biosynthesis entails a detoxification requirement in cancer cells that can be therapeutically exploited.


Subject(s)
Neoplasms , Serine C-Palmitoyltransferase , Lipogenesis , Oxidoreductases/metabolism , Serine/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives
7.
Stem Cell Reports ; 17(9): 2127-2140, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35985329

ABSTRACT

Mutations in the MAPT gene that encodes tau lead to frontotemporal dementia (FTD) with pathology evident in both cerebral neurons and glia. Human cerebral organoids (hCOs) from individuals harboring pathogenic tau mutations can reveal the earliest downstream effects on molecular pathways within a developmental context, generating interacting neurons and glia. We found that in hCOs carrying the V337M and R406W tau mutations, the cholesterol biosynthesis pathway in astrocytes was the top upregulated gene set compared with isogenic controls by single-cell RNA sequencing (scRNA-seq). The 15 upregulated genes included HMGCR, ACAT2, STARD4, LDLR, and SREBF2. This result was confirmed in a homozygous R406W mutant cell line by immunostaining and sterol measurements. Cholesterol abundance in the brain is tightly regulated by efflux and cholesterol biosynthetic enzyme levels in astrocytes, and dysregulation can cause aberrant phosphorylation of tau. Our findings suggest that cholesterol dyshomeostasis is an early event in the etiology of neurodegeneration caused by tau mutations.


Subject(s)
Frontotemporal Dementia , tau Proteins , Cholesterol , Frontotemporal Dementia/genetics , Humans , Mutation/genetics , Organoids/metabolism , tau Proteins/genetics , tau Proteins/metabolism
8.
Arthritis Res Ther ; 24(1): 175, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879786

ABSTRACT

OBJECTIVE: Linked metabolic and cardiovascular comorbidities are prevalent in hyperuricemia and gout. For mechanistic insight into impact on inflammatory processes and cardiometabolic risk factors of xanthine oxidase inhibitor urate-lowering therapy (ULT) titration to target, we performed a prospective study of gout serum metabolomes from a ULT trial. METHODS: Sera of gout patients meeting the 2015 ACR/EULAR gout classification criteria (n = 20) and with hyperuricemia were studied at time zero and weeks 12 and 24 of febuxostat or allopurinol dose titration ULT. Ultrahigh performance liquid chromatography-tandem mass spectroscopy acquired the serum spectra. Data were assessed using the Metabolon and Metaboloanalyst software. Lipolysis validation assays were done in febuxostat and/or colchicine-treated 3T3-L1 differentiated adipocytes. RESULTS: Serum urate decreased from time zero (8.21 ±1.139 SD) at weeks 12 (5.965 ± 1.734 SD) and 24 (5.655 ±1.763 SD). Top metabolites generated by changes in nucleotide and certain amino acid metabolism and polyamine pathways were enriched at 12 and 24 weeks ULT, respectively. Decreases in multiple fatty acid metabolites were observed at 24 weeks, linked with obesity. In cultured adipocytes, febuxostat significantly decreased while colchicine increased the lipolytic response to ß-adrenergic-agonism or TNF. CONCLUSION: Metabolomic profiles linked xanthine oxidase inhibitor-based ULT titration to target with reduced serum free fatty acids. In vitro validation studies revealed that febuxostat, but not colchicine, reduced lipolysis in cultured adipocytes. Since soluble urate, xanthine oxidase inhibitor treatment, and free fatty acids modulate inflammation, our findings suggest that by suppressing lipolysis, ULT could regulate inflammation in gout and comorbid metabolic and cardiovascular disease.


Subject(s)
Gout , Hyperuricemia , Adipocytes , Allopurinol/therapeutic use , Colchicine , Enzyme Inhibitors , Fatty Acids, Nonesterified/therapeutic use , Febuxostat/pharmacology , Febuxostat/therapeutic use , Gout Suppressants/adverse effects , Humans , Inflammation/drug therapy , Lipolysis , Prospective Studies , Uric Acid , Xanthine Oxidase/therapeutic use
9.
Metabolites ; 12(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35629937

ABSTRACT

Alcohol-related liver disease is a public health care burden globally. Only 10-20% of patients with alcohol use disorder have progressive liver disease. This study aimed to identify lipid biomarkers for the early identification of progressive alcohol-related liver disease, which is a key step for early intervention. We performed untargeted lipidomics analysis in serum and fecal samples for a cohort of 49 subjects, including 17 non-alcoholic controls, 16 patients with non-progressive alcohol-related liver disease, and 16 patients with progressive alcohol-related liver disease. The serum and fecal lipidome profiles in the two patient groups were different from that in the controls. Nine lipid biomarkers were identified that were significantly different between patients with progressive liver disease and patients with non-progressive liver disease in both serum and fecal samples. We further built a random forest model to predict progressive alcohol-related liver disease using nine lipid biomarkers. Fecal lipids performed better (Area Under the Curve, AUC = 0.90) than serum lipids (AUC = 0.79). The lipid biomarkers identified are promising candidates for the early identification of progressive alcohol-related liver disease.

10.
Cell Rep ; 37(5): 109957, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731610

ABSTRACT

The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Drug Repositioning , Energy Metabolism/drug effects , Fluoxetine/pharmacology , Glioblastoma/drug therapy , Signal Transduction/drug effects , Animals , Antineoplastic Agents/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Electronic Health Records , ErbB Receptors/metabolism , Female , Fluoxetine/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice, Nude , Permeability , Retrospective Studies , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism , Temozolomide/pharmacology , Tumor Burden/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Arthritis Res Ther ; 23(1): 200, 2021 07 24.
Article in English | MEDLINE | ID: mdl-34303373

ABSTRACT

BACKGROUND: Oxylipins are biological lipids that have been implicated in inflammation. We previously found that certain oxylipins correlated with clinical manifestations in psoriatic arthritis (PsA) patients. Here, we compare oxylipin profiles in PsA patients and those with psoriasis (PsO) without inflammatory arthritis to identify oxylipins that associate with specific disease manifestations to better understand disease pathogenesis and identify new biomarkers. METHODS: Consecutive patients with PsA (who met the CASPAR classification criteria for PsA) and PsO were recruited from the Rheumatology Outpatient Clinic. A thorough clinical examination was performed, including entheseal (Leeds enthesitis index (LEI)) and joint involvement (SJC/TJC 66/68). Patients were evaluated for pain and global disease activity on a visual analog scale (VAS) ranging from 0 to 100. This was followed by disease activity scores calculation: cDAPSA (Disease Activity Index for Psoriatic Arthritis) and Psoriasis Area and Severity Index (PASI). Serum oxylipins were determined by mass spectrometry and their association with clinical characteristics (PASI/LEI and cDAPSA) was analyzed using Metaboanalyst 4.0 and R version 3.6.1. RESULTS: Twenty PsO (average age 52 [10.8], 55% males) and 19 PsA patients (average age 60.5 [11.4], 63.1% males) were included. PsO patients had an average body mass index (BMI) of 33.7 (6.84) and an average PASI of 3.8 (4.2). PsA patients had an average BMI of 31.9 (5.6), TJC of 9.3 (10.41), SJC of 3.7 (4.23), with an average cDAPSA of 23.3 (11.4). 63.1% of PsA patients had enthesitis (average LEI 2.2 [3]) and the same percentage had psoriasis (average PASI 3(5]). Sera were analyzed for oxylipin levels. PsO and PsA patients with higher PASI score (> 2.5) had significantly lower serum concentrations of pro-inflammatory oxylipins, most of them arachidonic acid derived (AA). Oxylipin profiling did not associate with cDAPSA. Interestingly, several AA-derived oxylipins (5,15 di-HETE (5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid), 5-oxoETE (5-Oxo-eicosatetraenoic acid), PGE2 (prostaglandin E2), 11bPGE2 (11 beta prostaglandin D2), and LTB4 (leukotriene B4)) were significantly increased in PsA patients with enthesitis compared to those without. CONCLUSIONS: The AA-derived proinflammatory oxylipins were lower in both PsO and PsA patients with higher skin scores. Joint disease activity was not associated with the concentrations of oxylipins. Yet, enthesitis was associated with an increase of AA-derived pro-inflammatory oxylipins in PsA patients. Further studies are needed to determine whether oxylipin profiling can be a good biomarker of enthesitis in PsA patients.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Arachidonic Acids , Female , Humans , Male , Middle Aged , Oxylipins , Psoriasis/diagnosis , Severity of Illness Index
13.
J Gerontol A Biol Sci Med Sci ; 76(3): 415-425, 2021 02 25.
Article in English | MEDLINE | ID: mdl-32361743

ABSTRACT

Elderly-onset rheumatoid arthritis (EORA) and polymyalgia rheumatica (PMR) are common rheumatic diseases in older adults. Oxylipins are bioactive lipids derived from omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) that serve as activators or suppressors of systemic inflammation. We hypothesized that arthritis symptoms in older adults were related to oxylipin-related perturbations. Arthritis in older adults (ARTIEL) is an observational prospective cohort with 64 patients older than 60 years of age with newly diagnosed arthritis. Patients' blood samples at baseline and 3 months posttreatment were compared with 18 controls. A thorough clinical examination was conducted. Serum oxylipins were determined by mass spectrometry. Data processing and statistical analysis were performed in R. Forty-four patients were diagnosed with EORA and 20 with PMR. At diagnosis, EORA patients had a mean DAS28CRP (Disease Activity Score 28 using C-reactive protein) of 5.77 (SD 1.02). One hundred percent of PMR patients reported shoulder pain and 90% reported pelvic pain. Several n-6- and n-3-derived oxylipin species were significantly different between controls and arthritis patients. The ratio of n-3/n-6 PUFA was significantly downregulated in EORA but not in PMR patients as compared to controls. The top two candidates as biomarkers for differentiating PMR from EORA were 4-HDoHE, a hydroxydocosahexaenoic acid, and 8,15-dihydroxy-eicosatrienoic acid (8,15-diHETE). The levels of n-3-derived anti-inflammatory species increased in EORA after treatment. These results suggest that certain oxylipins may be key effectors in arthrtis in older adults and that the imbalance between n-6- and n-3-derived oxylipins might be related to pathobiology in this population.


Subject(s)
Arthritis, Rheumatoid/blood , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Polymyalgia Rheumatica/blood , Age Factors , Aged , Aged, 80 and over , Arthritis, Rheumatoid/diagnosis , Biomarkers/blood , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Polymyalgia Rheumatica/diagnosis
14.
Arthritis Rheumatol ; 73(3): 401-413, 2021 03.
Article in English | MEDLINE | ID: mdl-33001576

ABSTRACT

OBJECTIVE: Eicosanoids modulate inflammation via complex networks involving different pathways and downstream mediators, including oxylipins. Although altered eicosanoids are linked to rheumatoid arthritis (RA), suggesting that metabolization is enhanced, the role of oxylipins in disease stratification remains unexplored. This study was undertaken to characterize oxylipin networks during the earliest stages of RA and evaluate their associations with clinical features and treatment outcomes. METHODS: In total, 60 patients with early RA (according to the American College of Rheumatology/European League Against Rheumatism 2010 criteria), 11 individuals with clinically suspect arthralgia (CSA), and 28 healthy control subjects were recruited. Serum samples were collected at the time of onset. In the early RA group, 50 patients who had not been exposed to disease-modifying antirheumatic drug (DMARD) or glucocorticoid treatment at the time of recruitment were prospectively followed up at 6 and 12 months after having received conventional synthetic DMARDs. A total of 75 oxylipins, mostly derived from arachidonic, eicosapentanoic, and linoleic acids, were identified in the serum by liquid chromatography tandem mass spectrometry. RESULTS: Univariate analyses demonstrated differences in expression patterns of 14 oxylipins across the RA, CSA, and healthy control groups, with each exhibiting a different trajectory. Network analyses revealed a strong grouping pattern of oxylipins in RA patients, whereas in individuals with CSA, a fuzzy network of oxylipins with higher degree and closeness was found. Partial least-squares discriminant analyses yielded variable important projection scores of >1 for 22 oxylipins, which allowed the identification of 2 clusters. Cluster usage differed among the groups (P = 0.003), and showed associations with disease severity and low rates of remission at 6 and 12 months in RA patients who were initially treatment-naive. Pathway enrichment analyses revealed different precursors and pathways between the groups, highlighting the relevance of the arachidonic acid pathway in individuals with CSA and the lipooxygenase pathway in patients with early RA. In applying distinct oxylipin signatures, subsets of seropositive and seronegative RA could be identified. CONCLUSION: Oxylipin networks differ across stages during the earliest phases of RA. These distinct oxylipin networks could potentially elucidate pathways with clinical relevance for disease progression, clinical heterogeneity, and treatment response.


Subject(s)
Arthritis, Rheumatoid/blood , Oxylipins/blood , Adult , Aged , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Case-Control Studies , Discriminant Analysis , Disease Progression , Female , Humans , Least-Squares Analysis , Male , Middle Aged
16.
Anal Chem ; 92(20): 14054-14062, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33003696

ABSTRACT

Sphingolipids constitute a heterogeneous lipid category that is involved in many key cellular functions. For high-throughput analyses of sphingolipids, tandem mass spectrometry (MS/MS) is the method of choice, offering sufficient sensitivity, structural information, and quantitative precision for detecting hundreds to thousands of species simultaneously. While glycerolipids and phospholipids are predominantly non-hydroxylated, sphingolipids are typically dihydroxylated. However, species containing one or three hydroxylation sites can be detected frequently. This variability in the number of hydroxylation sites on the sphingolipid long-chain base and the fatty acyl moiety produces many more isobaric species and fragments than for other lipid categories. Due to this complexity, the automated annotation of sphingolipid species is challenging, and incorrect annotations are common. In this study, we present an extension of the Lipid Data Analyzer (LDA) "decision rule set" concept that considers the structural characteristics that are specific for this lipid category. To address the challenges inherent to automated annotation of sphingolipid structures from MS/MS data, we first developed decision rule sets using spectra from authentic standards and then tested the applicability on biological samples including murine brain and human plasma. A benchmark test based on the murine brain samples revealed a highly improved annotation quality as measured by sensitivity and reliability. The results of this benchmark test combined with the easy extensibility of the software to other (sphingo)lipid classes and the capability to detect and correctly annotate novel sphingolipid species make LDA broadly applicable to automated sphingolipid analysis, especially in high-throughput settings.


Subject(s)
Brain/metabolism , Medical Records Systems, Computerized/instrumentation , Plasma/metabolism , Sphingolipids/analysis , Sphingolipids/metabolism , Animals , Binding Sites , Chromatography, High Pressure Liquid , Fatty Acids/chemistry , High-Throughput Screening Assays , Humans , Hydroxylation , Mice , Models, Chemical , Reproducibility of Results , Tandem Mass Spectrometry
17.
Proc Natl Acad Sci U S A ; 117(27): 15789-15798, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32581129

ABSTRACT

Patients infected with influenza are at high risk of secondary bacterial infection, which is a major proximate cause of morbidity and mortality. We have shown that in mice, prior infection with influenza results in increased inflammation and mortality upon Staphylococcus aureus infection, recapitulating the human disease. Lipidomic profiling of the lungs of superinfected mice revealed an increase in CYP450 metabolites during lethal superinfection. These lipids are endogenous ligands for the nuclear receptor PPARα, and we demonstrate that Ppara-/- mice are less susceptible to superinfection than wild-type mice. PPARα is an inhibitor of NFκB activation, and transcriptional profiling of cells isolated by bronchoalveolar lavage confirmed that influenza infection inhibits NFκB, thereby dampening proinflammatory and prosurvival signals. Furthermore, network analysis indicated an increase in necrotic cell death in the lungs of superinfected mice compared to mice infected with S. aureus alone. Consistent with this, we observed reduced NFκB-mediated inflammation and cell survival signaling in cells isolated from the lungs of superinfected mice. The kinase RIPK3 is required to induce necrotic cell death and is strongly induced in cells isolated from the lungs of superinfected mice compared to mice infected with S. aureus alone. Genetic and pharmacological perturbations demonstrated that PPARα mediates RIPK3-dependent necroptosis and that this pathway plays a central role in mortality following superinfection. Thus, we have identified a molecular circuit in which infection with influenza induces CYP450 metabolites that activate PPARα, leading to increased necrotic cell death in the lung which correlates with the excess mortality observed in superinfection.


Subject(s)
Inflammation/genetics , Influenza, Human/genetics , PPAR alpha/genetics , Staphylococcal Infections/genetics , Superinfection/genetics , Animals , Bronchoalveolar Lavage/methods , Coinfection/genetics , Coinfection/microbiology , Coinfection/mortality , Cytochrome P-450 Enzyme System/genetics , Disease Models, Animal , Disease Susceptibility , Humans , Inflammation/microbiology , Inflammation/mortality , Influenza, Human/microbiology , Influenza, Human/mortality , Lung/microbiology , Lung/pathology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Knockout , Necroptosis/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/mortality , Superinfection/mortality
18.
Cell Metab ; 31(6): 1173-1188.e5, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32413335

ABSTRACT

G protein-coupled receptor 120 (GPR120) and PPARγ agonists each have insulin sensitizing effects. But whether these two pathways functionally interact and can be leveraged together to markedly improve insulin resistance has not been explored. Here, we show that treatment with the PPARγ agonist rosiglitazone (Rosi) plus the GPR120 agonist Compound A leads to additive effects to improve glucose tolerance and insulin sensitivity, but at lower doses of Rosi, thus avoiding its known side effects. Mechanistically, we show that GPR120 is a PPARγ target gene in adipocytes, while GPR120 augments PPARγ activity by inducing the endogenous ligand 15d-PGJ2 and by blocking ERK-mediated inhibition of PPARγ. Further, we used macrophage- (MKO) or adipocyte-specific GPR120 KO (AKO) mice to show that GRP120 has anti-inflammatory effects via macrophages while working with PPARγ in adipocytes to increase insulin sensitivity. These results raise the prospect of a safer way to increase insulin sensitization in the clinic.


Subject(s)
Insulin/metabolism , PPAR gamma/metabolism , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Acetates/pharmacology , Adipocytes/metabolism , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , PPAR gamma/agonists , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Rosiglitazone/pharmacology , Tyramine/analogs & derivatives , Tyramine/pharmacology
19.
J Hepatol ; 72(5): 946-959, 2020 05.
Article in English | MEDLINE | ID: mdl-31899206

ABSTRACT

BACKGROUND & AIMS: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS: Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY: IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Interleukin-17/metabolism , Kupffer Cells/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/metabolism , Liver Neoplasms/metabolism , Signal Transduction/genetics , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Ethanol/adverse effects , Gene Deletion , Humans , Liver Cirrhosis/pathology , Liver Diseases, Alcoholic/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Transcriptome
20.
Nutrients ; 11(9)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540208

ABSTRACT

Anorexia nervosa (AN) is a psychiatric disorder affected by psychological, environmental, and biological factors. Individuals with AN avoid high-fat, high-calorie diets and have shown abnormal metabolism of fatty acids (FAs), which are essential for brain and cognitive/neuropsychiatric health. To clarify the relationship between FAs and AN, fasting and postprandial plasma FAs in AN patients and age-matched control women were analyzed via mass-spectrometry. Clinical phenotypes were assessed using Becker Anxiety Inventory and Becker Depression Inventory. AN patients and controls exhibited different FA signatures at both fasting and postprandial timepoints. Lauric acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and alpha-linoleic acid (ALA) were higher in AN than in controls (lauric acid: 15,081.6 ± 14,970.2 vs. 8257.4 ± 4740.2 pmol/mL; ALA at fasting: 2217.7 ± 1587.6 vs. 1087.9 ± 821.2 pmol/mL; ALA at postprandial: 1830.9 ± 1115.6 vs. 1159.4 ± 664.7 pmol/mL. EPA: 33,788.3 ± 17,487.5 vs. 22,860.6 ± 12,642.4 pmol/mL; DPA: 32,664.8 ± 16,215.0 vs. 20,969.0 ± 12,350.0 pmol/mL. FDR-adjusted p-values < 0.05). Food intake and AN status modified the correlations of FAs with body mass index (BMI), depression, and anxiety. Desaturases SCD-18 and D6D showed lower activities in AN compared to controls. Altered FA signature, specifically correlations between elevated n-3 FAs and worsened symptoms, illustrate metabolic underpinnings in AN. Future studies should investigate the mechanisms by which FA dysregulation, specifically elevated n-3 FAs, affects AN risk and outcome.


Subject(s)
Anorexia Nervosa/blood , Eating/physiology , Fatty Acids/blood , Adult , Anorexia Nervosa/psychology , Anxiety/blood , Depression/blood , Eicosapentaenoic Acid/blood , Fasting , Fatty Acid Desaturases , Fatty Acid Elongases , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Fatty Acids, Unsaturated/blood , Female , Humans , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL
...